
1

WILL YOUR APP RUN FASTER WITH MORE CORES?

Two Tools Measure the Performance

Scalability of Your Application

Q: Will my software performance scale if it is run on a large number of cores?

How do I know if my code is or isn’t parallel enough to take advantage of more cores?

Measure your application’s concurrency

Don’t guess, measure. Measurement is a key part of any performance plan. Applications don’t always behave as we expect.

Accurately measuring what your app is really doing is required to develop an effective plan for scalability.

Intel® VTune™ Amplifier XE (included as part of Intel® Parallel Studio XE) has multiple profiling tools. Running just two of these

will give you an accurate picture of how you are doing on today’s multicore systems and highlight scaling bottlenecks.

The first tool, concurrency analysis is one of the key views in Intel VTune Amplifier XE. It answers the question: For a given

workload, what amount of time is the app running serially and what amount is in parallel? This gives a measure of best case

performance scaling. Parallel code may scale, serial code will not. Concurrency analysis tells you the maximum performance

you can achieve if all your parallel code scales perfectly.

Intel VTune Amplifier XE Concurrency Summary

This is a breakdown of elapsed time of an application running on a 4 core processor. It shows the amount of wall clock time

where a specific number of threads are running simultaneously. Threads are considered running if they are either actually

running on a CPU or are in a runnable state in the OS scheduler.

This particular app will not scale well. The locks and waits analysis in the next figure will help us see why.

The second tool, locks and waits analysis, is also in Intel VTune Amplifier XE. It will tell you if the threads you do have are doing

a good job of coordinating. If you have a lot of contention, then you want to reduce it. This will both improve performance on

current multicore systems and increase performance scalability on systems with more cores.

WHITE PAPER

2

Running the Analysis is

Easy

To run a Lock & Waits

Analysis in Intel VTune

Amplifier XE, just select

“Locks and Waits” from the

column of analysis types on

the left, then the “Start”

button.

Locks & Waits Analysis

Here we can clearly see the problem. It was designed so that 4 threads would be running most of the time, but there are two

issues. First, there are 26.97 seconds of idle time because a lock (stream) is being held during I/O. Second, there is a lot of

synchronization overhead.

The grid at the top is a list of synchronization objects sorted by wait time. The color coding shows the processor utilization

during the wait. A long wait is ok if the processors are well utilized (green) during the wait. In this example, the processors are

poorly utilized (red) or idle (grey) during the waits. The bottom row in the grid (stream) shows the idle time during I/O.

When you look for efficient scalable code it is important to look at the overhead and wait time. It is also important to

understand whether threads are waiting a long time at a few locks or small increments of time on numerous locks. The timeline

in the bottom half shows the synchronization as many yellow transitions between the running threads. Consequently, the

actual concurrency (bottom row of timeline) is very low. Numerous transitions may show excessive synchronization calls and

may merit a review of the code or algorithm to find ways to reduce the number of synchronizations or barriers.

3

Will it scale?

Now that you have a picture of how your app is behaving it

is time to reflect on a few basic design issues.

Does the number of threads adjust to match the

hardware?

Have you designed your parallelism so that the number of

threads can be automatically or easily adjusted to match

the optimum number of threads the hardware can run? If

there are too few threads, you won’t take advantage of

the hardware. Too many and execution is inefficient. If

you have used a high level model for parallelism like Intel®

Threading Building Blocks (Intel® TBB) this is automatic. If

you have done your own OS level threading, it is something

you must manage.

Will the granularity be correct for a large number

of cores?

The workload for each thread needs to be heavy enough

that you get payback for the thread overhead. You can

measure this using the concurrency analysis in VTune

Amplifier XE, or you can just time program execution. Let’s

say that the measurements you make indicate that your

workload is appropriate when you run it on a 16 core

system. (Appropriate scaling is your decision – are you

comfortable with 10X scaling on 16 cores? Or do you

expect 12X or 14X? Different projects have different

scaling expectations.) Your application is performing well,

but you want to know what will happen when you move to

a 64 core system. Try re-analyzing your application on

today’s system, but re-size the workload so it matches the

size per core you will use on the future system with more

cores. If the threading overhead is still reasonable, then

your granularity will most likely be fine in the future.

Does the synchronization overhead increase?

When the number of threads increases, does the number of

synchronization points increase? If so, what is the degree

of synchronization? If the number of synchronization

points does not increase or if the increase ispair-wise or

low degree of interation and not global (all threads), then

your synchronization overhead is likely to be fine. If you

are unsure, run an experiment with more threads and view

the synchronization using Intel® VTune™ Amplifier XE.

As you work through these design issues, it is a good time

to think about your model for parallelism. One of the

easiest ways to design for scalability is to adopt a higher

level model for parallelism.

Express parallelism at a higher level

We are all familiar with the productivity advantages of

writing software in high level languages instead of in

assembly. The same is true for parallelism. Using low level

constructs like Pthreads and Windows* Threads is

equivalent to writing assembly. You have maximum

control, but productivity suffers and performance

optimizations may need to change with new hardware.

No one high-level construct for parallelism is best for all

applications. There are a number of high level constructs

depending upon your needs.

OpenMP* is a popular choice for C and Fortran

programmers, and is well supported by many companies

including Intel. If it works well for you, there is probably no

reason to change, however programs without OpenMP*

today have better options for parallelism. OpenMP* lacks

the composability, in particular the ability to nest

parallelism well, that Intel TBB and Cilk Plus can offer. Still,

it is a good solution if you already have a major investment

in it.

Intel® Threading Building Blocks is a template library

based solution for C++. It uses task-based abstractions

that make it easier to get scalable and reliable parallel

applications. With Intel® TBB as your parallel development

model you have a known scalable solution that will be

optimized for new generations of hardware. Commercial

versions of Intel® TBB are available for Windows*, Linux*

and Mac OS*. Or use the open source version. TBB offers

the ability to express a wide range of algorithms. In

addition it offers a scalable memory allocator as well as

highly optimized thread controls for the advanced user.

Intel® Cilk™ Plus is an extension to C and C++. The three

Intel Cilk Plus keywords provide a simple yet surprisingly

powerful model for parallel programming, while runtime

and template libraries offer a well-tuned environment for

building parallel applications. Intel® Cilk™ Plus is now

available in Intel Parallel Studio XE and a subset of Cilk Plus

is currently added to a development branch of the GCC 4.7

project. Cilk™ Plus is the most efficient and requires the

fewest code changes and this makes it a popular choice.

4

Coarrays as defined in the Fortran 2008 standard allow

Fortran developers to program in parallel. As an extension

to the Fortran language, coarrays offer one method to use

Fortran as a robust and efficient parallel programming

language. Coarray Fortran uses a single-program, multi-

data programming model (SPMD) and is supported by Intel

Parallel Studio XE.

These are just a few examples of the parallel development

choices available in Intel Parallel Studio XE. Pick the one

that is the best fit for your app. No matter which construct

you pick, you see the benefits of moving to a higher level

of abstraction. Productivity will increase and the compiler

or library that implements the higher level parallelism will

optimize performance for new hardware platforms.

Summary

It is a multicore / manycore world. Concurrency and

scalability are vital to future performance growth. Using

tools to characterize your application’s performance is the

key to predicting performance on future hardware with

increased core counts. Expressing parallelism at a higher

level of abstraction improves productivity and increases

your chances for performance scalability.

Try it yourself

Download a free evaluation copy of Intel® Parallel Studio

XE. It contains:

 Intel® VTune™ Amplifier XE performance analyzer

 Parallel development models including Intel® Threading

Building Blocks (Intel® TBB)

 Intel® Inspector XE memory and thread checker

 Static security analysis to find coding errors and harden

software security.

 Optimizing compilers and performance libraries

Suggested Reading

 Intel Guide for Developing Multithreaded Applications

 Webinar – “The Key to Scaling Applications for

Multicore”

 Intel® VTune™ Amplifier XE – a short overview movie and

detailed step-by-step getting started tutorials.

 Intel® TBB white papers:

 Enable safe, scalable parallelism with Intel® TBB

concurrent containers

 Demystify scalable parallelism with Intel® TBB

generic parallel algorithms

 Intel® TBB: Scalable programming for multi-core

About the Author
Dick Kaiser is an Intel Product Marketing Engineer specializing in software analysis tools.

Notices

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO

ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH

PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF

INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY

PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

© 2011, Intel Corporation. All rights reserved. Intel, the Intel logo, VTune, Cilk and Xeon are trademarks of Intel
Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

Intel_TwoToolsMeasurethePerformanceScalabilityofYourApplication_WP /Rev1211

http://software.intel.com/en-us/articles/intel-software-evaluation-center/
http://software.intel.com/en-us/articles/intel-parallel-studio-xe/
http://software.intel.com/en-us/articles/intel-parallel-studio-xe/
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
http://software.intel.com/en-us/articles/intel-parallel-building-blocks/
http://software.intel.com/en-us/articles/intel-tbb/
http://software.intel.com/en-us/articles/intel-tbb/
http://software.intel.com/en-us/articles/intel-inspector-xe/
http://software.intel.com/en-us/articles/static-security-analysis/
http://www.intel.com/software/threading-guide
http://software.intel.com/en-us/videos/the-key-to-scaling-applications-for-multicore-seg1of3/
http://software.intel.com/en-us/videos/the-key-to-scaling-applications-for-multicore-seg1of3/
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/#howto
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe-documentation/
http://www.devx.com/cplus/Article/33334/0
http://www.devx.com/cplus/Article/33334/0
http://www.devx.com/cplus/Article/32935/0
http://www.devx.com/cplus/Article/32935/0
http://software.intel.com/file/31563

	Measure your application’s concurrency
	Will it scale?
	Does the number of threads adjust to match the hardware?
	Will the granularity be correct for a large number of cores?
	Does the synchronization overhead increase?

	Express parallelism at a higher level
	Summary
	Try it yourself
	Suggested Reading
	About the Author Dick Kaiser is an Intel Product Marketing Engineer specializing in software analysis tools.
	Notices

