
1 *Other names and brands may be claimed as the property of others.

UTILIZE CAPABILITIES WITHIN INTEL® XEON® PROCESSORS

A Concise Guide to Parallel Programming Tools

for Intel® Xeon® Processors

Q: How do I pick the right programming models and tools that boost application performance?

Introduction

As microprocessors transition from clock speed as the primary vehicle for performance gains to features such as multiple cores,

wider vectors and increasing vector instruction sets; it is increasingly important for software developers to optimize their

applications to fully utilize the inherent capabilities of the hardware. However, developers often don’t realize specialized tools

are now available to help them fully utilize these capabilities.

This paper explains the available hardware features, lists options for tools, describes each tool in more detail, and asks frank

questions to help developers determine the right tool for their application. If you’re a programmer working in a C, C++ or

Fortran environment and are willing to make a few code changes, read on to learn how companies large and small are

experiencing outstanding improvements in their applications performance - by using Intel’s software tools.

Reasons to embrace parallelism

There are varying reasons to adopt parallelism, and it’s

important to understand your motivation and expectations

for doing so. In our experience, organizations adopt

parallelism for one or more of the following reasons:

 Customers complaining about application

performance

 Applications where deriving the solution is time

critical (e.g., predicting tomorrow’s weather can’t

take a week)

 Competitors are implementing parallelism

 Power savings by doing the same amount of work

via efficiently threaded code

 Allow offering new capabilities for your application

(e.g. add security to an application with minimal

impact to overall performance by offloading AES

encryption to the CPU)

Performance oriented features in Intel®

Xeon® Processors

Intel® Xeon® processors contain several inherent features

that allow users to significantly enhance the performance

of their application. However these features need

programming expertise and the use of industry or Intel

provided tools to fully utilize their benefits.

CPU Capability Benefit to Applications

Intel® Smart Cache Take advantage of fast CPU memory by

reducing cache misses

Intel® Hyper-

Threading Technology

Multi-threaded code executing across

virtual cores increases performance

Intel® multi-core

technology

Multi-threaded code executing across

physical cores increases performance

Intel® SSE including

Intel® AVX

Vectorized data runs in parallel within

each core for increased performance

Intel® AES-NI Protection using hardware accelerated

security features

Performance

Monitoring Unit (PMU)

PMU enables finding performance issues

like cache misses

WHITE PAPER

2 *Other names and brands may be claimed as the property of others.

Available Tools

Intel offers developers with a wide choice of programming tools and models to embrace parallelism.

Programming Tools

Analysis tools quickly pinpoint problem areas in source

code by looking for errors and security vulnerabilities, and

provide insights to help you make decisions. Libraries

provide pre-defined functions that can easily be added to

your code to more efficiently use performance oriented

features in Intel hardware. Compilers offer optimization

features and multi-threading capabilities. Cluster Tools

help analyze and optimize performance of parallel

applications when developing for clusters using Message

Passing Interface (MPI). Our bundled suites simplify the

acquisition process by including most or all of these tools in

a single installable package.

Category Intel product Supported

Language(s)

Analysis

Tools

Intel® Parallel Advisor C, C++

Intel® VTune™ Amplifier XE C, C++, Fortran, C#

Intel® Inspector XE C, C++, Fortran

Libraries Intel® Math Kernel Library

(Intel® MKL)

C, C++, Fortran

Intel® Integrated

Performance Primitives

(Intel® IPP)

C, C++. Usage

examples for C#,

Java

Intel® Threading Building

Blocks (Intel® TBB)

C++ template

library

Compilers Intel® Composer XE C, C++, Fortran

Cluster

Tools

Intel® MPI Library C, C++, Fortran

Intel® Trace Analyzer and

Collector

C, C++, Fortran

Bundled

Suites

Intel® Parallel Studio XE C, C++, Fortran

Intel® Cluster Studio XE C, C++, Fortran

Programming Models

Intel also offers a common set of parallel programming

models that can be used both on multi- and many-core

processors. Each model allows developers to introduce or

improve parallelism in their applications. They range from

those designed with high level abstraction and ease of use

in mind (such as Intel® Cilk™ Plus and Intel® TBB), highly

optimized and extensively threaded libraries designed for

drop-in productivity (Intel® IPP, Intel® MKL) and tools

implementing established standards that help scale across

computing environments (MPI, OpenMP*, Coarray Fortran

and OpenCL*). The table below shows the multiple choices

available.

Family of Programming Models: offering developers

a wide variety of tools.

3 *Other names and brands may be claimed as the property of others.

Determine if optimizing applications for performance is right for you

Selecting the right feature(s) to utilize and then matching the right tool to unlock its potential depends on the specific

application and environment. Our consulting engineers typically ask the following questions to determine whether parallelism

is right for an organization, as well as suggesting what tools would be appropriate.

Question Response

Are you a software developer with

access to source code?

If yes, continue

Are you willing to spend effort to

improve performance?

If yes, continue

Have you analyzed your code for

performance?

 Start by profiling your code to determine where it’s spending time, wasting time and waiting

too long. Intel® VTune™ Amplifier XE uses the on-chip Performance Monitoring Unit on Intel®

Xeon® processors for hardware event sampling. E.g., identifying non-optimal use of on-board

cache (Intel Smart Cache Technology).

 Intel® Parallel Advisor: Provides step by step help to identify and experiment with adding

parallelism

 Intel® Inspector XE: Can find both memory and threading errors that lead to parallelism

problems, including difficult to find errors like deadlocks and race conditions. It ensures your

code is correctly multi-threaded to allow execution across both virtual (Intel Hyper Threading

Technology) and physical (Intel multi-core technology) cores.

Did you find hotspots in a

function?

Replace slow library functions with highly tuned and parallelized versions that are available at

low cost and without royalties. If a particular function (ex. BLAS, FFT, matrix multiply) is a

hotspot, utilize our libraries. They contain thousands of pre-defined, highly optimized functions

that can be dropped-in to your code, and automatically scale with future Intel CPU features

without requiring a re-compile:

 Intel® Math Kernel Library: functions for science, engineering and financial applications. e.g.,

By using Intel AVX optimizations, Intel MKL provides up to 90% performance improvement

for SMP LINPACK on Intel Xeon processors)

 Intel® Integrated Performance Primitives: functions for images & video, communications and

signal processing, data processing. (e.g., By using the AES-NI hardware acceleration in Intel

Xeon processors, Intel IPP provides up to 145% performance improvement over OpenSSL)

Did you find hotspots in a module? If you find a hotspot within one module, you can recompile that portion with the Intel compiler,

while continuing to use your existing compiler for the rest. Also try auto-vectorization and

other automated features in the compiler.

Are you interested in additional

performance?

Explore our entire toolkit including programming models listed in the table that follows.

Note: Applications that are floating point intensive are particularly well suited for acceleration via our tools

4 *Other names and brands may be claimed as the property of others.

Determine the right programming model for your application and environment

Let’s take a look at compatibility.

Question Response

What programming languages

do you use?

C – Intel Cilk™ Plus, Intel IPP, Intel MKL, possibly Intel OpenCL* SDK

C++ - Either Cilk™ Plus, Intel TBB, Intel IPP, Intel MKL

Fortran - Choose from Coarray Fortran, Intel MPI, Intel MKL, Intel IPP (via cross language calls)

C# - some API support from Intel MKL and Intel IPP.

Scripting Languages (Python*, PERL*) - limited options available via Intel MKL and Intel IPP

What OS support is needed? Windows* – comprehensive support

Linux* – comprehensive support

Mac OS* X – support available via C++ Composer XE and Fortran Composer XE (Cilk™ Plus, Intel TBB,

Intel IPP, Intel MKL, compilers, OpenMP*, Coarray Fortran).

Note: All tools provide comprehensive support for Intel Architecture and compatibles.

Selecting a programming model:

Question Response

How willing are you to learn a new

programming model? How tolerant

are you of changes to your code?

Low willingness and tolerance– Use Intel IPP and Intel MKL libraries. Explore the compiler’s

auto-vectorization features.

Somewhat willing and tolerant – Consider Intel Cilk™ Plus, Intel OpenMP*, Coarray Fortran in

addition to libraries

Very willing and tolerant – Consider Intel TBB, Intel MPI as they provide maximum flexibility

and performance

Are you using shared memory,

cluster or vector programming?

Programming for a cluster – use MPI for applications using distributed memory. Use OpenMP*,

Intel Cilk™ Plus, Intel TBB for nodes under MPI.

Programming for shared memory – Use OpenMP*, Intel Cilk™ Plus, Intel TBB.

Programming for vectors (SSE/AVX etc) – Use Intel Cilk™ Plus, Fortran90 array notation.

Is CPU + GPU hybrid programming

important?

If yes, consider using OpenCL*.

Programming Tools and Models: Brief Descriptions

Intel® Parallel Studio XE (bundled suite): A parallel

software development suite that combines Intel's industry-

leading C/C++ compiler and Fortran compiler; performance

and parallel libraries; error checking, code robustness, and

performance profiling tools into a single suite offering. This

helps boost application performance and increase the code

quality, security, and reliability needed by high-

performance computing and enterprise applications. At the

same time, the suite eases the procurement of all the

necessary tools for high performance, and simplifies the

transition from multicore to many-core processors in the

future by using a common set of tools. Learn more at

software.intel.com/en-us/articles/intel-parallel-studio-xe/

Intel® Cluster Studio XE (bundled suite): adds our cluster

tools to Intel Parallel Studio XE. It is the first tool suite that

enables maximum performance, reliability, and scalability

for the development and analysis of shared, distributed

and hybrid memory C++/Fortran applications on Intel® IA-

32 and Intel® 64 architecture based Windows* and Linux*

platforms. Learn more at software.intel.com/en-

us/articles/intel-cluster-studio-xe/

http://software.intel.com/en-us/articles/intel-parallel-studio-xe/
http://software.intel.com/en-us/articles/intel-parallel-studio-xe/

5 *Other names and brands may be claimed as the property of others.

Intel® Parallel Advisor (analysis): guides developers to

add or improve parallelism to existing C/C++ programs.

Developers can use it to identify the most time consuming

serial code regions, insert annotations to experiment with

adding parallelism, check the suitability of the proposed

changes, and check for problems that would prevent the

application from working correctly when parallelized. The

tool is currently available on Microsoft Windows*. Learn

more at: software.intel.com/en-us/articles/intel-parallel-

advisor/

Intel® Composer XE (compiler and library): is the name

for the product bundle that includes Intel’s C++ Compiler,

Intel Fortran Compiler, Intel Math Kernel Library, Intel

Integrated Performance Primitives and Intel Threading

Building Blocks. It allows C/C++ and Fortran developers to

develop and maintain high-performance and enterprise

applications on the latest Intel® Architecture processors.

Using this product delivers improvements over and above

the best optimizing C++ and Fortran compilers in the

market. A simple recompile with Intel Composer XE can

boost performance by 20 percent or more. Performance

improvements are derived from optimizations in memory,

auto-parallelization and vectorization. Learn more at

software.intel.com/en-us/articles/intel-composer-xe/

Intel® VTune Amplifier XE (analysis tool): is a threading

and performance profiling software for C/C++, Fortran and

C# developers who need to understand serial and parallel

behavior to improve performance and scalability. As a

software performance analyzer for applications on

Windows and Linux, Intel VTune Amplifier XE removes the

guesswork by providing quick access to scaling information

for faster and improved decision making. Fine-tune for

optimal performance, ensure cores are fully exploited and

new processor capabilities are supported to the fullest.

The software features a number of new pre-defined

performance profiling experiments for quickly getting

detailed profiling information without having to know

microarchitectural details. After profiling, analysis features

such as timeline, filtering and frame analysis turn data into

actionable information. Learn more at

www.intel.com/software/products/vtune

Intel® Inspector XE (analysis tool): helps improve

application reliability by detecting memory and threading

errors. The tool is designed for C, C++, C# and Fortran

developers building software on Windows* and Linux*

systems. The Memory analysis tool can detect memory

leaks and memory corruption early in the development

cycle. The Thread analysis tool and debugger finds threads

that have problematic interactions, and identifies data

races and deadlocks. It also finds intermittent and non-

deterministic errors, even when the error causing timing

scenario does not happen. Using this tool early in the

development cycle can detect and resolve security issues

that would be far more expensive to resolve once the

software has been deployed. Learn more at

software.intel.com/en-us/articles/intel-inspector-xe/

Intel® MPI Library (cluster library): increases application

performance on Intel® architecture-based clusters by

implementing the high performance Message Passing

Interface -2 (MPI-2) specification on multiple fabrics. It

allows for changes or upgrades to new interconnects

without requiring major changes to the software or

operating environment. Use this high-performance

message-passing interface library to develop applications

that can run on multiple cluster fabric interconnects chosen

by the user at runtime. Intel also provides a free runtime

environment kit for products developed with the Intel MPI

library. Get best-in-class performance for enterprise,

divisional, departmental, and workgroup high performance

computing. Learn more at software.intel.com/en-

us/articles/intel-mpi-library/

Intel® Trace Analyzer and Collector (cluster analysis): is

a powerful tool for understanding MPI application

correctness and behavior. It includes a low-overhead

tracing library that performs event-based tracing in

applications. You can analyze the collected trace data for

performance hotspots and bottlenecks. The product is

completely thread safe and integrates with C/C++,

FORTRAN and multithreaded processes with and without

MPI. It supports binary instrumentation and fail-safe mode.

Additionally it can check for MPI programming and system

errors. The Intel® Trace Analyzer provides a convenient

way to monitor application activities gathered by the Intel

Trace Collector through graphical displays. You can view

the desired level of detail, quickly identify performance

hotspots and bottlenecks, and analyze their causes.

Bundled together, ITAC provides optimized analysis and

visualization capabilities. Together they offer fast graphical

rendering of complex profiling data and they easily scale up

to hundreds of processes. The tool is available on Linux*

and Microsoft Windows*. Learn more at

software.intel.com/en-us/articles/intel-trace-analyzer/

http://software.intel.com/en-us/articles/intel-parallel-advisor/
http://software.intel.com/en-us/articles/intel-parallel-advisor/
http://software.intel.com/en-us/articles/intel-composer-xe/
http://www.intel.com/software/products/vtune
http://software.intel.com/en-us/articles/intel-inspector-xe/
http://software.intel.com/en-us/articles/intel-mpi-library/
http://software.intel.com/en-us/articles/intel-mpi-library/
http://software.intel.com/en-us/articles/intel-trace-analyzer/

6 *Other names and brands may be claimed as the property of others.

Programming Models

Libraries (Intel® Math Kernel Library and Intel®

Integrated Performance Primitives): Libraries provide an

important abstract parallel programming method that

needs to be considered before jumping into programming.

Library implementations for algorithms including BLAS,

video or audio encoders and decoders, FFT, solvers and

sorters, are important to consider. Intel’s libraries offer

advanced implementations of many algorithms that are

highly tuned to utilize SSE and AVX instruction sets,

multicore and many-core processors. A single source code

can get these benefits by a single call into a routine in one

of the libraries. MKL offers the standard interfaces in

Fortran, and supports the new industry standard for C

interfaces to LAPACK that Intel helped create. Standards

combined with Intel’s relentless pursuit of high

performance in their libraries, make libraries an easy choice

to utilize as the first choice in parallel programming. Learn

more at www.intel.com/software/products/mkl/ and

www.intel.com/software/products/ipp/

Matrix Multiply in Fortran using Intel® Math Kernel Library

call

DGEMM(transa,transb,m,n,k,alpha,a,lda,b,ldb,b

eta,c,ldc)

Intel® Cilk™ Plus: A quick, easy and reliable extension to C

and C++. It provides tasking extensions and array

notations for effective use of task, data and vector

parallelism. These extensions trace their history back to

M.I.T. research by Prof. Leiserson and the company he

founded known as Cilk Arts. Intel® Cilk™ Plus should be

promoted to C and C++ programmer looking to harness

task, data and vector parallelism on processors and co-

processors. Cilk Plus should be considered before Intel TBB

in any project that would benefit from vector parallelism.

Intel Cilk Plus and Intel TBB features can be mixed and

used together. Therefore, Intel TBB users may use data

and vector parallelism capabilities of Cilk Plus in a program

using Intel TBB. Learn more at http://cilkplus.org

Parallel function invocation in C using Intel® Cilk™ Plus

cilk_for (int i=0; i<n; ++i) {

 Foo(a[i]);

}

DAXPY in array notation using Intel® Cilk™ Plus

a[0:n] += x * b[0:n];

Intel® Threading Building Blocks (Intel® TBB): The most

popular abstraction for parallel programming in C++.

Introduced by Intel in 2006, it became an open source

project in 2007, and has enjoyed considerable adoption in

the industry and has surpassed OpenMP in popularity.

Companies that have publicly talked about using Intel TBB

include Adobe, Autodesk and Dreamworks Animation to

name a few. Intel TBB has been ported to numerous

operating systems and processors. Intel TBB should be

used by C++ developers looking to harness multicore or

many-core parallelism. More information is available here

http://threadingbuildingblocks.org

Parallel function invocation in C++ using Intel® Threading

Building Blocks

parallel_for (0, n,

 [=](int i) { Foo(a[i]); }

);

OpenMP*: In 1996, the OpenMP* standard was proposed

as a way for compilers to assist in the utilization of parallel

hardware. After more than a decade, every major compiler

for C, C++ and Fortran supports OpenMP*. OpenMP is

especially well suited for the needs of Fortran programs

and scientific programs written in C. Intel is a member of

the OpenMP* work group and a leading vendor of

implementations of OpenMP* and supporting tools.

OpenMP* is applicable to multicore and many-core

programming. Learn more at http://openmp.org

Summing vector elements in C using OpenMP

#pragma omp parallel for reduction(+: s)

for (int i = 0; i < n; i++) {

 s += x[i];

}

http://www.intel.com/software/products/mkl/
http://www.intel.com/software/products/ipp/
http://cilkplus.org/
http://threadingbuildingblocks.org/
http://openmp.org/

7 *Other names and brands may be claimed as the property of others.

Message Passing Interface (MPI): For programmers

utilizing a cluster, in which processors are connected by the

ability to pass messages but not always the ability to share

memory, the Message Passing Interface (MPI) is the most

common programming method. In a cluster, communication

continues to use MPI, as they do today, regardless of

whether a node has many-core processors or not. The

widely used Intel® MPI library offers both high performance

and support for virtually all interconnects. The Intel® MPI

library supports multicore and many-core processor based

systems creating ranks on multicore and many-core

processors in a fashion that is familiar and consistent with

MPI programming today. Learn more at

http://intel.com/go/mpi

MPI code in C for clusters

for (d=1; d<ntasks; d++) {

 rows = (d <= extra) ? avrow+1 : avrow;

 printf(“ sending %d rows to task %d\n”,

rows, dest);

 MPI_Send(&offset, 1, MPI_INT, d, mtype,

MPI_COMM_WORLD);

 MPI_Send(&rows, 1, MPI_INT, d, mtype,

MPI_COMM_WORLD);

 MPI_Send(&a[offset][0], rows*NCA,

MPI_DOUBLE, d, mtype, MPI_COMM_WORLD);

 MPI_Send(&b, NCA*NCB, MPI_DOUBLE, d,

mtype, MPI_COMM_WORLD);

 offset = offset + rows;

}

Coarray Fortran: The Fortran 2008 standard introduced

the “co-array” extensions as an additional method to use

Fortran as a robust and efficient parallel programming

language. The Intel® Fortran Compiler supports parallel

programming using coarrays as defined in the Fortran

2008 standard for both shared memory and distributed

memory systems. Coarray Fortran uses a single-program,

multi-data programming model (SPMD). Learn more at

http://intel.com/software/products

Sum in Fortran, using co-array feature

REAL SUM[*]

CALL SYNC_ALL(WAIT=1)

DO IMG= 2,NUM_IMAGES()

 IF (IMG==THIS_IMAGE()) THEN

 SUM = SUM + SUM[IMG-1]

 ENDIF

 CALL SYNC_ALL(WAIT=IMG)

ENDDO

OpenCL*: OpenCL* offers a close-to-the-hardware

interface offering some important abstraction and

substantial control coupled with wide industry interest and

commitment. OpenCL* may require the most refactoring of

any of the solutions covered in this whitepaper, specifically

refactoring based on advanced knowledge of the

underlying hardware. Results from refactoring work may

be significant for multicore and many-core performance,

and the resulting performance may or may not be possible

without such refactoring. A goal of OpenCL* is to make an

investment in refactoring productive when it is undertaken.

Solutions other than OpenCL* offer methods to avoid the

need for refactoring based on advanced knowledge of the

underlying hardware. Learn more at

http://intel.com/go/opencl

Per element multiply in C using OpenCL

kernel void

 dotprod(global const float *a,

 global const float *b,

 global float *c) {

 int myid = get_global_id(0);

 c[myid] = a[myid] * b[myid];

}

http://intel.com/go/mpi
http://intel.com/software/products
http://intel.com/go/opencl

8 *Other names and brands may be claimed as the property of others.

Summary

Don’t leave performance on the table. As Intel CPU’s continually add new performance oriented features, source code must be

vectorized and multi-threaded. This paper has shown how analysis tools can identify focus areas for performance, how slow

functions can be swapped out with highly optimized functions in Intel’s libraries, how a hotspot within a module can be re-

compiled using our compilers, and how multiple programming models exist that can take you all the way.

Intel has been providing developers with programming tools to utilize our processors capabilities for over 25 years. Intel

understands application needs vary widely, and we provide developers with a wide choice of tools and options to solve a

variety of programming problems. Amongst those who have used our tools, it’s common to report performance gains of 10%,

2x, even 20x. The tools are designed to complement your current environment, whether its Microsoft Visual Studio*, Eclipse*,

Xcode, makefile or command-line builds, with either the Microsoft, Intel, or GCC compilers.

As products based on Intel® Many Integrated Core Architecture (Intel® MIC architecture) become available, its increasingly

important to ensure your source code is ready to take full advantage of the available horsepower. The good news is the same

standardized, high level x86 programming models that apply to multicore also apply to many-core. Once optimized for Intel

Xeon processors, developers can reuse their existing code and programming expertise on Intel MIC architecture. We

encourage you to learn more at: software.intel.com/parallel/, or post your question on a forum at software.intel.com/en-

us/forums/threading-on-intel-parallel-architectures/.

Purchase Options: Language Specific Suites

Several suites are available combining the tools to build, verify and tune your application. Single or multi-user licenses and

volume, academic, and student discounts are available.

 Suites >>

Intel®

Parallel

Studio XE

Intel®

Cluster

Studio XE

Intel®

C++

Studio XE

Intel®

Fortran

Studio XE

Intel®

Composer

XE

Intel®

C++

Composer XE

Intel®

Fortran

Composer XE

C
o

m
p

o
n

e
n

ts

Intel® C / C++ Compiler

Intel® Fortran Compiler

Intel® Integrated Performance Primitives3

Intel® Math Kernel Library3

Intel® Cilk™ Plus

Intel® Threading Building Blocks

Intel® Inspector XE

Intel® VTune™ Amplifier XE

Static Security Analysis

Intel® MPI Library

Intel® Trace Analyzer & Collector

Rogue Wave IMSL* Library2

 Operating System1 W, L W, L W, L W, L W, L W, L, M W, L, M

Notes: 1Operating System: W=Windows, L= Linux, M= Mac OS* X. 2 Available in Intel® Visual Fortran Composer XE for Windows with IMSL*. 3 Not available

individually on Mac OS X, included in Intel® C++ & Fortran Composer XE suites for Mac OS X

file:///C:/Users/lmcglinc/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/AKSP2IGV/software.intel.com/parallel/
http://software.intel.com/en-us/forums/threading-on-intel-parallel-architectures/
http://software.intel.com/en-us/forums/threading-on-intel-parallel-architectures/

9 *Other names and brands may be claimed as the property of others.

Evaluate a tool

Download a free evaluation copy of our tools. If you’re still uncertain where to begin, we suggest:

 For bundled suites, try Intel Parallel Studio XE or Intel Cluster Studio XE

 Intel® VTune™ Amplifier XE performance analyzer

 Intel® Parallel Advisor for Windows*

Learning Tools

 Intel Learning Lab, collection of tutorials, white papers and more.

 Technical Presentations and Videos on Parallel Programming

Suggested Reading

 Intel Guide for Developing Multithreaded Applications

 Webinar – “The Key to Scaling Applications for Multicore”

 Intel® VTune™ Amplifier XE – a short overview movie and detailed step-by-step getting started tutorials.

 Article: Getting code ready for parallel execution (includes more detailed code examples)

 774 page Manual: Intel 64 and IA-32 Architectures Reference Manual

 Intel® TBB book on Amazon.com

Notices

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,

BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS

PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER

AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS

INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR

INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

 Optimization Notice Notice revision #20110804

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique

to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does

not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not

specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and

Reference Guides for more information regarding the specific instruction sets covered by this notice.

© 2012, Intel Corporation. All rights reserved. Intel, the Intel logo, VTune, Cilk and Xeon are trademarks of Intel
Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

A_CONCISE_GUIDE_TO_PARALLEL_PROGRAMMING_TOOLS_FOR_INTEL®_XEON®_PROCESSORS_022812_WP /Rev-0212

http://software.intel.com/en-us/articles/intel-software-evaluation-center/
http://software.intel.com/en-us/articles/intel-software-evaluation-center/
http://software.intel.com/en-us/articles/intel-software-evaluation-center/
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
http://software.intel.com/en-us/articles/intel-parallel-advisor/
http://software.intel.com/en-us/articles/intel-learning-lab/
http://software.intel.com/en-us/articles/intel-software-development-products-technical-presentations/
http://software.intel.com/en-us/videos/channel/parallel-programming/introduction-to-intel-cilk-plus
http://www.intel.com/software/threading-guide
http://software.intel.com/en-us/videos/the-key-to-scaling-applications-for-multicore-seg1of3/
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/#howto
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe-documentation/
http://software.intel.com/en-us/articles/getting-code-ready-for-parallel-execution-with-intel-parallel-composer/
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.amazon.com/Intel-Threading-Building-Blocks-Parallelism/dp/0596514808

	Introduction
	Reasons to embrace parallelism
	Performance oriented features in Intel® Xeon® Processors
	Available Tools
	Programming Tools
	Programming Models

	Determine if optimizing applications for performance is right for you
	Determine the right programming model for your application and environment

	Programming Tools and Models: Brief Descriptions
	Summary
	Purchase Options: Language Specific Suites
	Evaluate a tool
	Learning Tools
	Suggested Reading
	Notices

