
1

EXPLOIT CAPABILITIES WITHIN INTEL® XEON® PROCESSORS

An Introduction to Vectorization

with the Intel® C++ Compiler

Q: How do I take advantage of SSE and AVX instructions to speed up my code?

Introduction

This paper introduces vectorization and how C and C++

developers can take advantage of it. The reason to use

vectorization is to create more efficient application

processing that can increase application performance.

Vectorization techniques can be used by just about any

application developer. The first forms of vectorization

presented in this paper are those that are the easiest to

use. They require no changes to code. Next are libraries,

followed by compiler options that offer advice to the

programmer on steps to take to deliver vectorization (this

paper uses the Intel® C++ Compiler to exemplify these

options). Additional topics are introduced that require

more programmer intervention in source code and which

offer the most programmer control, and frequently, a

higher return in performance or efficiency. Here are the

topics covered in this paper:

 Auto-vectorization capabilities of the Intel C++ Compiler

 Use of threaded and thread-safe libraries, such as Intel®

Math Kernel Library (Intel® MKL) and Intel® Integrated

Performance Primitives (Intel® IPP)

 Use of special compiler build-log reports to guide source

code changes and use of pragmas

 Guided Auto-Parallelism in the Intel C++ Compiler

 Pragma SIMD statement

 Use of Intel® Cilk™ Plus array notation and elemental

function syntax

 Intel SIMD intrinsics

Topics introduced in this paper apply to vectorizing code

for Intel IA-32, Intel 64 and the upcoming Intel® MIC

architecture. Thus, the vectorization you implement using

the Intel C++ Compiler will scale over systems using

current and future Intel processors.

Reading materials are mentioned throughout the paper and

are presented in a list at the end of the paper.

What is Vectorization?

In computer science, vectorization is the process of

converting an algorithm from a scalar implementation,

which does an operation one pair of operands at a time, to

a vector process, where a single instruction can refer to a

vector (series of adjacent values)1 . In effect, it adds a

form of parallelism to software in which one instruction or

operation is applied to multiple pieces of data. When done

on computing systems that support such actions, the

benefit is more efficient processing and improved

application performance. Many general-purpose

microprocessors today feature multimedia extensions that

support SIMD (single-instruction-multiple-data) parallelism.

And when the hardware is coupled with C++ compilers that

support it, developers of scientific, engineering,

computational finance, media or graphical applications have

an easier time delivering more efficient, better performing

software2.

Performance or efficiency benefits from vectorization

depend on the code structure. But, in general, the

automatic and near automatic techniques introduced below

are most productive in delivering improved performance or

efficiency. The techniques offering the most control

require greater application knowledge and skill in knowing

where they should be applied. But these more intrusive

techniques, such as intrinsics, can yield potentially greater

performance and efficiency benefit when properly used.

1 A Guide to Vectorization with Intel® C++ Compilers, page

1, Mark Sabahi, et. al., Intel Corporation.
2 Vectorization with the Intel Compilers, Intel Developer

Services, page 1, Aart J.C. Bik, Intel Corporation.

WHITE PAPER

http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/

2

A Good Way to Start: Intel® Compilers

and the Auto-Vectorization Feature

Intel® C++ and Intel® Fortran compilers support SIMD by

supporting the Intel® Streaming SIMD Extensions (Intel®

SSE) and Intel® Advanced Vector Extensions (Intel® AVX) on

both IA-32 and Intel® 64 processors. Both compilers do

auto-vectorization, generating Intel SIMD code to

automatically vectorize parts of application software when

certain conditions are met. Because no source code

changes are required to use auto-vectorization, there is no

impact on the portability of your application.

To take advantage of auto-vectorization, applications must

be built at default optimization settings (-O2) or higher. No

additional or special switch setting is needed. The compiler

will automatically look for opportunities to execute multiple

adjacent loop iterations in parallel using packed SIMD

instructions3. If one or more loops have been vectorized,

the compiler emits a remark to the build log that identifies

the loop and says that the “LOOP WAS VECTORIZED.”

When you use Intel compilers on systems that use Intel

processors, you get ‘free’ performance improvements that

will automatically take advantage of processing power as

the Intel architecture gets more parallel. This is an

example of what we mean by ‘scaling forward.’

You can try the Intel compilers yourself by downloading an

evaluation copy of an Intel compiler and testing it with the

sample code included with the compiler4 or with your own

‘loopy’ code. The Intel C++ Compiler features easy-to-use

“Getting Started” guides that take you step-by-step

through the use of the sample code and many compiler

features, such as auto-vectorization.

3 Op. cit., Sabahi, et. al., Intel Corporation
4 After downloading and installing the compiler, find the

“example 1” directory. The “Guide to Vectorization …”

paper shows you the simple steps to take to see the

performance benefit of vectorization.

Intel® MKL and Intel® IPP

Another easy way to take advantage of vectorization is to

make calls in your applications to the vectorized forms of

functions in the Intel® Math Kernel Library. Much of Intel

MKL is threaded and supports auto-vectorization to help

you get the most of today’s multi-core processors. Intel

MKL functions are also fully thread-safe, so multiple calls

for different threads will not conflict with one another.

Similarly, Intel® Integrated Performance Primitives is

another library for C and C++ developers, which also

features vectorized functions. Intel® IPP offers libraries

that can be called for multimedia, data processing, and

communications applications.

Vectorization Reports and Pragmas

Intel compiler build-log reports contain two important kinds

of information about vectorization. First, as noted above,

they reports which loops were vectorized. Second, and

perhaps more useful, an optional report provides

information about why some loops were not vectorized.

This can be very helpful in providing guidance to

restructure code so it will auto-vectorize.

Figure 1. Sample source code and a sample report from the

compiler indicating the loop was vectorized. More in “A Guide

to Vectorization with Intel® C++ Compilers.”

#include <math.h>

void quad(int length, float *a, float *b,

float *c, float *restrict x1, float *restrict x2)

 {

 for (int i=0; i<length; i++) {

 float s = b[i]*b[i] - 4*a[i]*c[i];

 if (s >= 0) {

 s = sqrt(s) ;

 x2[i] = (-b[i]+s)/(2.*a[i]);

 x1[i] = (-b[i]-s)/(2.*a[i]);

 }

 else {

 x2[i] = 0.;

 x1[i] = 0.;

 }

 }

 }

> icc -c -restrict -vec-report2 quad.cpp

quad5.cpp(5) (col. 3): remark: LOOP WAS VECTORIZED.

http://software.intel.com/en-us/articles/intel-software-evaluation-center/
http://software.intel.com/en-us/articles/intel-software-evaluation-center/
http://software.intel.com/sites/products/collateral/XE/Intel_MKL10-3_Brief_101011-2.pdf
http://software.intel.com/sites/products/collateral/XE/Intel-IPP7-0_Brief_101011-2.pdf

3

Figure 2. Example of unvectorizable code with a sample

report. More in “A Guide to Vectorization with Intel® C++

Compilers.”

void no_vec(float a[], float b[], float c[])

{

 int i = 0.;

 while (i < 100) {

 a[i] = b[i] * c[i];

// this is a data-dependent exit condition:

 if (a[i] < 0.0)

 break;

 ++i;

 }

}

> icc -c -O2 -vec-report2 two_exits.cpp

two_exits.cpp(4) (col. 9): remark: loop was not

vectorized: nonstandard loop is not a

vectorization candidate.

These reports are also useful to help guide use and

placement of the 45+ pragmas that can override

assumptions made by the compiler. For developers familiar

with their applications, these pragma statements make it

easy to declare to the compiler that it is safe to ignore

issues such as potential data dependencies. Other pragmas

deal with explicit loop counts, allow developers to declare

that a loop is safe to vectorize regardless of what the

compiler thinks about the performance cost or benefit, and

assert that data within the loop are aligned. There is also a

statement to tell the compiler to not vectorize a loop and a

compiler option to not do any vectorization. These can be

useful for ‘before’ and ‘after’ performance and results

testing.

Descriptions and examples of pragmas supported by the

Intel C++ Compiler are provided in Intel C++ Compiler

Pragmas section of the Intel® C++ Compiler XE User and

Reference Guides.

Figure 3. An C++ example of the ivdep pragma

void copy(char *cp_a, char *cp_b, int n) {

 for (int i = 0; i < n; i++) {

 cp_a[i] = cp_b[i];

 }

}

#pragma ivdep

void copy(char *cp_a, char *cp_b, int n) {

 for (int i = 0; i < n; i++) {

 cp_a[i] = cp_b[i];

 }

}

The example in Figure 3 above makes the point that

vectorizing compilers might assume memory regions

accessed by the pointer variables cp_a and cp_b may

(partially) overlap. A pragma (in lower box) can be used to

tell the compiler that the loop won’t do this. As it pertains

to C++, you can read more in “A Guide to Vectorization with

Intel® C++ Compilers, including Section 6.2.2 that provides

more information about the restrict keyword.

Guided Auto-Parallelism (GAP)

The Intel C++ Compiler also includes an easy-to-use tool to

help you vectorize code. It’s called Guided Auto-Parallelism

(GAP), which is invoked with the “/Qguide” option on

Windows and “–guide” on Linux. This causes the compiler

to generate diagnostic reports – but no object code or

executable – that suggest ways to improve auto-

vectorization as well as auto-parallelization and data

layout. The advice may include suggestions for source

code changes, applying specific pragmas, or applying

specific compiler options. In all cases, applying specific

advice requires the user to verify that it is safe to apply

that particular suggestion.5 This is a powerful tool to help

you extend the auto-vectorization and auto-parallelism

capabilities of the compiler for developers who are familiar

with the code on which they are working.

Pragma SIMD

Yet another tool is user-mandated vectorization using the

#pragma simd statement.6 This is a feature that enables

you to tell the compiler to enforce vectorization of loops.

Pragma simd is designed to minimize the amount of source

code changes needed in order to obtain vectorized code. It

is related to the auto-vectorization discussion above in

that it can be used to vectorize loops that the compiler

does not normally auto-vectorize even using vectorization

hints such as “#pragma vector always” or “#pragma ivdep”.

You add the pragma to a loop, recompile, and the loop is

vectorized. This interesting feature alone makes reading

the “Guide to Vectorization” worthwhile. It is listed in the

reference section at the end of this paper.

5 Op. cit, Sabahi, et. al., pg 25
6 Op. Cit., A Guide to Vectorization with Intel® C++

Compilers, page 27

http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/cpp/lin/cref_cls/common/cppref_bk_pragma_intro.htm
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/cpp/lin/cref_cls/common/cppref_bk_pragma_intro.htm
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/

4

Intel® Cilk™ Plus: New, Powerful

Vectorization Capability

Intel C++ offers more elements of programmer control in

implementing vectorization and parallelism. The Intel C++

Compiler includes Intel® Cilk™ Plus, which introduces vector

notation for arrays, also called array notation, supporting

mathematical operations on arrays without constrained

serial ordering, and elemental functions (vector functions)

in which the compiler generates code to operate on a short

vector of arguments.

Array notation syntax specifies an array section using a set

of 3 numbers, either variable or literal, in an array syntax

separated by colons7. The first is the lower bound where

the array section starts, the second is the length of the

array, and the third is the stride used to select items from

the array. A stride of 1 will select every item from the

lower bound contiguously until the array section limit is

reached. Specifying a stride of 2 will select every other

item.

Figure 4 shows a simple form of array notation. It’s a

simple vector multiplication, with a lower bound of 0, an

array section length of N and an unspecified stride which

defaults to 1. In this example, A0 is set to the product of B0

and C0, A1 is set to the product of B1 and C1, etc.

Figure 4. A simple example of array notation showing

simple vector multiplication.

a[0:N] = b[0:N] * c[0:N];

Figure 5 shows a more complex example in which the 10th

item of the array X, up to X of 100, is assigned a sin of

every other alternating item of the array Y from 20 to 40.

Figure 5. A more sophisticated example of array notation

X[0:10:10] = sin(y[20:10:2]);

In Figure 5, the compiler knows that the call to the sin

function can be done safely in parallel via vector

operations. This enables the safe generation of vector

code. But it can’t assume the same for user functions.

If you have a function that consists of operations to scalar

data that follow certain guidelines, you can declare your

function an elemental function using the __declspec vector

7 Introduction to Intel® Cilk™ Plus, Brandon L. Hewitt. The

description in this paragraph, including the examples, are

from a 6 minute video that introduces Intel Cilk Plus.

function notation as shown in Figure 6. See the Additional

Reading section at the end of this paper for more material

on elemental functions.

Figure 6. Example of elemental function syntax

__declspec(vector) int foo(int x) {

Return(x+1);

}

for(int I = 0; I < size; i++)

array[i]=foo(array[i]);

Regarding elemental functions, it is important that both the

function definition and any function declaration use this

notation consistently. Doing this will enable the compiler

to emit vector code to call multiple elements of foo in an

array at a given point in time.

Intrinsics

For C++ developers interested in even more control, Intel

offers SIMD intrinsics, vector intrinsics and a large number

of other types of intrinsics. Intrinsics are assembly-coded

functions that allow you to use C++ function calls and

variables in place of assembly instructions. They are

expanded inline eliminating function call overhead and thus

can improve application performance for those interested

in getting quite close to the hardware. They provide the

same benefit as using inline assembly, can improve code

readability, assist instruction scheduling, and help reduce

debugging, relative to using assembly code. Intrinsics are

for ‘deep-dive’ developers interested in squeezing out that

last measure of application performance. For more

information, please consult the “Overview: Intrinsics

Reference” section of the Intel C++ documentation.

It may also be useful to know that using pragmas,

directives or intrinsics may vectorize your code but may

not lead to enhanced performance. Intel offers an

informative, short paper that lays out the requirements for

loop vectorization called “Requirements for Vectorized

Loops.”

http://software.intel.com/en-us/videos/introduction-to-intel-cilk-plus/
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/2011Update/cpp/win/index.htm
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/2011Update/cpp/win/index.htm
http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/
http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/

5

Summary

Other development products from Intel can also help with vectorization and other forms of parallelism. Intel® VTune™ Amplifier

XE can help analyze code to find performance bottlenecks and Intel® Inspector XE can help debug parallel code to verify

threading correctness.

The performance benefits from vectorization and parallelism can be significant. Intel Software Development products offer

flexible capabilities that enable tapping into this performance, some of which are automatic, others that are easy to use and

still more that offer extensive programmer control. This paper offers quick survey of these capabilities. Take the time to

download Intel Software Development tools, evaluate them, and see for yourself how you can take advantage of parallelism in

contemporary computing systems.

Additional Reading and Community

A Guide to Vectorization with Intel® C++ Compilers, Mario Deilmann, Kiefer Kuah, Martyn Corden, Mark Sabahi, all from Intel.

Vectorization with the Intel® Compilers (Part 1), A.J.C Bik, Intel, Intel Software Network Knowledge base and search the title in

the keyword search. This article offers good bibliographical references.

The Software Vectorization Handbook. Applying Multimedia Extensions for Maximum Performance, A.J.C. Bik. Intel Press, June,

2004, for a detailed discussion of how to vectorize code using the Intel® compiler.

Vectorization: Writing C/C++ code in VECTOR Format, Mukkaysh Srivastav, Computational Research Laboratories (CRL) - Pune,

India. Intel Software Network Knowledge base and search the title in the keyword search

Intel® Cilk™ Plus Introductory Information. Overviews, videos, getting started guide, documentation, white papers and a link to

the community.

Elemental functions: Writing data parallel code in C/C++ using Intel® Cilk™ Plus. Robert Geva, Intel Corporation

Intel® C++ Composer XE documentation, Includes documentation for the Intel® C++ Compiler.

Intel Software Network, Search for topics such as “Parallel Programming in the “Communities” menu or “Software Forums” or

Knowledge Base in the “Forums and Support” menu.

Requirements for Vectorizable Loops, Martyn Corden, Intel Corporation

The Software Optimization Cookbook, Second Edition, High-Performance Recipes for IA-32 Platforms by Richard Gerber, Aart

J.C. Bik, Kevin B. Smith and Xinmin Tian, Intel Press.

http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
http://software.intel.com/en-us/articles/intel-inspector-xe/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/vectorization-with-the-intel-compilers-part-i/
http://noggin.intel.com/intelpress/categories/books/software-vectorization-handbook
http://software.intel.com/en-us/articles/vectorization-writing-cc-code-in-vector-format
http://software.intel.com/en-us/articles/intel-cilk-plus-support/?wapkw=(Cilk)
http://software.intel.com/en-us/articles/elemental-functions-writing-data-parallel-code-in-cc-using-intel-cilk-plus/
http://software.intel.com/en-us/articles/intel-c-composer-xe-documentation/
http://software.intel.com/en-us/
http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops
http://www.intel.com/intelpress/sum_swcb2.htm

6

Purchase Options: Language Specific Suites

Several suites are available combining the tools to build, verify and tune your application. Single or multi-user licenses and

volume, academic, and student discounts are available.

 Suites >>

Intel®

Parallel

Studio XE

Intel®

C++

Studio XE

Intel®

Fortran

Studio XE

Intel®

Cluster

Studio XE

Intel®

Composer

XE

Intel®

C++

Composer XE

Intel®

Fortran

Composer XE

C
o

m
p

o
n

e
n

ts

Intel® C / C++ Compiler

Intel® Fortran Compiler

Intel® Integrated Performance Primitives3

Intel® Math Kernel Library3

Intel® Cilk™ Plus

Intel® Threading Building Blocks

Intel® Inspector XE

Intel® VTune™ Amplifier XE

Static Security Analysis

Intel® MPI Library

Intel® Trace Analyzer & Collector

Rogue Wave IMSL* Library2

 Operating System1 W, L W, L W, L W, L W, L W, L, M W, L, M

Note: (1)1 Operating System: W=Windows, L= Linux, M= Mac OS* X. (2)2 Available in Intel® Visual Fortran Composer XE for Windows with IMSL*(3)3

Not available individually on Mac OS X, it is included in Intel® C++ & Fortran Composer XE suites for Mac OS X

Evaluate a tool

Download a free evaluation copy of our tools. If you’re still uncertain where to begin, we suggest:

1. For suites that include the compiler and libraries along with analysis tools, try Intel Parallel Studio XE or Intel Cluster

Studio XE (if you use MPI clusters)

2. If you are not interested in analysis tools, Intel® Composer XE combines the Intel compilers with libraries.

Learning Tools

 Intel® C++ Composer XE 2011 Getting Started Tutorials

o Windows: http://software.intel.com/sites/products/documentation/hpc/composerxe/en-

us/start/win/tutorial_comp_cpp_win.pdf

o Linux: http://software.intel.com/sites/products/documentation/hpc/composerxe/en-

us/start/lin/tutorial_comp_cpp_lin.pdf

o Mac OS X: http://software.intel.com/sites/products/documentation/hpc/composerxe/en-

us/start/mac/tutorial_comp_cpp_mac.pdf

 Intel Learning Lab, collection of tutorials, white papers and more.

http://software.intel.com/en-us/articles/intel-software-evaluation-center/
http://software.intel.com/en-us/articles/intel-software-evaluation-center/
http://software.intel.com/en-us/articles/intel-software-evaluation-center/
http://software.intel.com/en-us/articles/intel-software-evaluation-center/
http://software.intel.com/en-us/articles/intel-composer-xe/
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/start/win/tutorial_comp_cpp_win.pdf
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/start/win/tutorial_comp_cpp_win.pdf
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/start/lin/tutorial_comp_cpp_lin.pdf
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/start/lin/tutorial_comp_cpp_lin.pdf
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/start/mac/tutorial_comp_cpp_mac.pdf
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/start/mac/tutorial_comp_cpp_mac.pdf
http://software.intel.com/en-us/articles/intel-learning-lab/

7

About the Author

Chuck Piper is an Intel Product Marketing Engineer specializing in compilers.

Notices

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,

BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS

PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER

AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS

INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR

INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Optimization Notice Notice revision #20110804

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique

to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does

not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not

specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and

Reference Guides for more information regarding the specific instruction sets covered by this notice.

© 2012, Intel Corporation. All rights reserved. Intel, the Intel logo, VTune, Cilk and Xeon are trademarks of Intel
Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

Intel_ An-Introduction-to-Vectorization-with-the- Intel_C++_Compiler_WP /Rev-021712

	Introduction
	What is Vectorization?
	A Good Way to Start: Intel® Compilers and the Auto-Vectorization Feature
	Intel® MKL and Intel® IPP
	Vectorization Reports and Pragmas
	Guided Auto-Parallelism (GAP)
	Pragma SIMD
	Intel® Cilk™ Plus: New, Powerful Vectorization Capability
	Intrinsics
	Summary
	Additional Reading and Community
	Purchase Options: Language Specific Suites
	Evaluate a tool
	Learning Tools
	About the Author
	Notices

