

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

What’s New in Intel® Fortran?
Intel Fortran Composer 2011 XE

Webinar

 December 14th, 2010
Steve Lionel, Ron Green

12/16/10 1

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Agenda

• What’s in a name? Changes in naming
• New utilities, new options, new installation dirs
• What’s New in Fortran standards features?
• A simple and quick look at using the Intel Fortran

compiler’s Coarray Fortran (CAF) feature
• Question and Answer session

12/16/10 2

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

An Obvious Change: Naming

• New names:
–  Intel® Visual Fortran Composer XE 2011 (Windows*)
–  Intel® Fortran Composer XE 2011 (Linux* and Mac OS* X)

• Replaces older “…Compiler Pro “ naming
• Composer XE 2011 is our next major release (12.0)
• Registration Center: Version numbers not as

prominent – using “Update x”

12/16/10 3

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Licensing

• Existing, CURRENT licenses for Compiler Pro will
work for Intel Fortran Composer products

• Registration Center will offer to “upgrade” your
existing licenses – this is FREE

• Intel C/C++ licenses MUST BE UPGRADED for Intel
C/C++ Composer XE 2011 – upgrade is free

• All renewals will get upgraded licenses to Composer
XE 2011 products

• Optional: Compiler customers can move to new

“Intel® Parallel Studio XE 2011” products. These
contain the Intel Fortran compiler, C++ compiler,
libraries, AND new checking and performance tools

12/16/10 4

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Poll Question #1

12/16/10 5

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

What’s New OLD in Intel Fortran: listing file
Back by popular demand: DEC Fortran style cross

referenced listing file:
 -list[=filename] or /list[:filename]!
 where filename is the name of the output file

• if filename is not specified, the listing is saved in the
name of the source file with extension .lst

 default is –no-list or /list-

The listing contains the following:
•  The contents of files, including contents with INCLUDE

statements, with line numbers
• A symbol list with a line number cross-reference for each
• A list of compiler options used for the current compilation
•  list-line-len and list-page-len options for further control

12/16/10 6

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

What’s New OLD in Intel Fortran: listing file

12/16/10 7

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. 8

GAP – Guided Automatic Parallelization

Key design ideas:
•  Use compiler to help detect what is blocking

optimizations – in particular vectorization,
parallelization and data transformations – gives
advice on how to change code, add directives, add
compiler options

•  Extend diagnostic message for failed vectorization and
parallelization by specific hints to fix problem

•  Not a separate tool, part of the compiler
It is not:

•  Automatic vectorizer or parallelizer
•  in fact, no code is generated to accelerate analysis

•  GAP does not ask the programmer to change
algorithms, transformation ordering or internal
heuristics of compiler

•  It is restricted to changes applied to the program to be
compiled

12/16/10

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. 9

Workflow with Compiler as a Tool

Compiler Application

Source
C/C++/Fortran

Application
Binary

+ Opt Reports

Identify
hotspots,
problems

Performance

Tools

Simplifies programmer effort in application tuning

Application
Source +
Hotspots

Compiler
in advice-

mode

Advice
messages

Modified
Application

Source

Compiler

(extra
options)

Improved
Application

Binary

GAP

12/16/10

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. 10

GAP – How it Works (linux)
Selection of most Relevant Switches

Multiple compiler switches to activate and fine-tune
guidance analysis

• Activate messages individually for vectorization,
parallelization, data transformations or all three
-guide[=level]
-guide-vec[=level]
-guide-par[=level]
-guide-data-trans[=level]
Optional argument level=1,2,3,4 controls extend of analysis

• Control the source code part for which analysis is done
-guide-opts=<arg>
Samples:
-guide-opts="bar.f90,'module_1::func_solve`“

• Control where the message are going
-guide-file=<file_name>

12/16/10

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

GAP – How it Works (Windows)
• Windows – right-click or Project Properties

– GAP analysis appears in Output window

12/16/10 11

Right-click file or project,
Fortran Composer pop-up

Choose single-file
or whole project

OR you can use the
Project Properties,
Fortran, Diagnostics
property page

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

GAP Sample Messages

 GAP REPORT LOG OPENED ON Thu May 20 15:22:14 2010!
!
C:\scalar_dep.f90(66): remark #30525: (PAR) If the trip count of the
loop at line 66 is greater than 36, then use "!dir$ loop count min
(36)" to parallelize this loop.  
[VERIFY] Make sure that the loop has a minimum of 36 iterations.!

 !
C:\scalar_dep.f90(66): remark #30515: (VECT) Loop at line 66 cannot
be vectorized due to !

 conditional assignment(s) into the following variable(s): T.
This loop will be vectorized !

 if the variable(s) become unconditionally initialized at the top
of every iteration. !

 [VERIFY] Make sure that the value(s) of the variable(s) read in
any iteration of the loop !

 must have been written earlier in the same iteration.!

12/16/10 12

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Also New: Tutorials and Samples, New
Directory Structure

• Greatly enhanced and updated samples included in
Composer XE

• Tutorials to help introduce new features (GAP, for
example)

12/16/10 13

• New directory paths on Linux, Windows, Mac OS X
• Better integration of libraries
• Linux and Mac OS X: side-by-side installation of

multiple versions BUT symbolic links give a ‘default’
path to tools that is not version dependent

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Also New Features in Both Intel Fortran and
Intel C/C++

• Enhanced vectorization
– Loops with mixed data types, conditionals
– Support AVX instruction set (-[a]xAVX or /Q[a]xAVX)

• SIMD directives
– For example, require compiler to vectorize a loop

• Math library options (-fimf-precision /Qimf-
precision)
– High/low accuracy options (tradeoff against performance)
– Require consistent results on all processor types

• Matrix multiply idiom recognition (-opt-matmul)
– Replace by high performance library call

12/16/10 14

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Poll Question #2

12/16/10 15

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Fortran Language Features – What’s
New?

12/16/10 16

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

What’s New in Intel Fortran
Fortran 2003 implementation mostly complete

–  Added in 12.0 (not in 11.1)
–  Complete type-bound procedures (GENERIC, OPERATOR,..)
–  FINAL procedures

–  Remaining major features of F2003 not implemented:
–  User-defined derived type I/O
–  Parameterized derived types

Fortran 2008 features
–  Coarrays
–  DO CONCURRENT
–  CONTIGUOUS
–  I/O enhancements
–  New constants in ISO_FORTRAN_ENV
–  New intrinsic functions
–  Increase maximum rank from 7 to 31

–  F2008 requires only 15

12/16/10 17

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Fortran 2003 Pointer Bounds Specification
and Remapping List on Pointer Assignment

• Fortran 2003 features
• Pointer assignment for arrays extended to allow

specification of lower bounds:
real :: myarray(1:100,1:100)
real, pointer :: ptr(:,:)
ptr(0:,0:) => myarray

• Remapping of a rank-one array

– ptr(1:n,1:n) => 1D_Array(1:n*n)

12/16/10 18

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Fortran 2003 FINALizers
• A derived type with ‘FINAL’ subroutines bound to it
• The FINAL subroutine(s) perform ‘clean-up’ when

the object ceases to exist
module M

 type mytype

 : !declaration of mytype components
 contains

 FINAL :: mycleanup
 end type mytype

contains

 subroutine mycleanup(x)
 type(mytype) :: x
 !...deallocate data in object X

 end subroutine mycleanup

end module M

12/16/10 19

Note: Fortran 2003
does not have the
equivalent to C++
constructor
functions

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

F2008 DO CONCURRENT
A new Parallel Loop Construct
• Syntax uses elements of Fortran 90 FORALL

DO [,] CONCURRENT <forall-header>

• Semantically there is a key difference to FORALL
however :
– No dependencies between the iterations of the loop body are

permitted (no “loop carried dependencies”)
• The semantics of DO CONCURRENT make it easier to

parallelize
• Use option –parallel (/Qparallel) to get parallelization
• No requirement or guarantees that the loop will be

parallelized
• Our implementation will execute the iterations in parallel

using OpenMP*

20 12/16/10

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

F2008 DO CONCURRENT
Example:

DO CONCURRENT (i=1:m)
 a(k+i) = a(k+i) + factor*a(l+i)
END DO

Different from FORALL, using DO CONCURRENT, the
programmer guarantees, that the values of m, k and l will
never cause a(l+i) to reference an element of the array
defined on the LHS

in other words: the array sections a(l+1:l+m) and a(k+1:k
+m) do not overlap

This allows compiler to generate very efficient parallel code.

21 12/16/10

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Fortran 2008 CONTIGUOUS Attribute
• An array attribute that tells the compiler that the

data occupies a contiguous block
– Allows compiler to make optimizations
– Pointers and assumed-shaped arrays: useful to remove

ambiguity when the compiler cannot determine if the
object is contiguous or non-contiguous

real, pointer, contiguous :: ptr(:)
real, contiguous :: arrayarg(:,:)

• The POINTER target must be contiguous
• The actual argument corresponding to the

assumed-shape array must be contiguous
• F08 intrinsic, logical return: is_contiguous()
IF (is_contiguous(thisarray)) THEN

 ptr => thisarray

12/16/10 22

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Fortran 2008 MOLD keyword for ALLOCATE

• ALLOCATE statement can give a polymorphic
variable the type and shape of another object
without copying the other object’s values.

allocate (polymorphvar, mold=srcvar)

Variable polymorphvar is allocated with the type and

shape of srcvar. polymorphvar does not receive
the values in the components of srcvar.

Also, SOURCE= with polymorphic source not yet

supported in ALLOCATE

12/16/10 23

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Fortran 2008 IO Additions

• NEWUNIT=<integer> keyword in OPEN finds a unit
number that is not being used. Simplifies
bookkeeping of unit numbers

OPEN(NEWUNIT=iun, file=‘foo’, …)
 !assigns an unused number to iun

• G0 and G0.d edit descriptors. Can be used with
multiple data types:
–  real or complex: acts like esw.de

–  e format with values w, d and e chosen by the processor
–  Integers, acts like I0
– Logicals, acts like L1
– Character, acts like A

12/16/10 24

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Fortran 2008 IO Additions
Unlimited format item repeat count

• Asterisk preceding a list of edit descriptors
• Repeats the list indefinitely
real :: myarray(50) = 42.0

write(42, ‘(“myarray =“, *(g0, :, “,”))’) myarray

myarray=42.00000,42.00000,42.00000,42.00000,42.00000,4
2.00000,42.00000,42.00000,42.00000,42.00000,42.00000
,42.00000,42.00000,…etc…

•  This example writes 1 record, comma separated values
•  This can be used with G0 edit descriptor to write output with

various data types present

12/16/10 25

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

F2008 Intrinsics
• Bessel, first kind
• Bessel, second kind
• Error functions
• GAMMA
• Euclidean distance
• Bit-wise comparisons
• Integer bit-wise shifts
• Bit masks
• Merge bits with mask

12/16/10 26

• Population count: return
the number of 1 bits

• Parity of population
• Bit-wise exclusive-or

(XOR) on array
elements

• Bitwise reductions on
array elements using
AND or OR

• Number of leading or
trailing 0 bits

• Storage size in bits

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Fortran 2008 Additions to
ISO_FORTRAN_ENV

• CHARACTER_KINDS
– Default integer array with the kind values supported for

variables of type character
– Size equals the number of kinds supported

• INTEGER_KINDS, REAL_KINDS
– Similar to CHARACTER_KINDS, arrays of kind values for

INTEGER and REAL data types

12/16/10 27

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Fortran 2008 Additions to
ISO_FORTRAN_ENV

• INT8, INT16, INT32, and INT64
– Default integer scalars, kind values for integers of storage

size 8, 16, 32, and 64 bits
–  If there is no such type, -2 is return if there is a type of

larger storage size or -1 otherwise

• REAL32, REAL64, and REAL128
– Default integer scalars, the kind values for reals of storage

size 32, 64, and 128 bits
–  If there is no such type, -2 is return if there is a type of

larger storage size or -1 otherwise

12/16/10 28

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Poll Question #3

12/16/10 29

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Coarray Fortran Fundamentals
• Simple extension to Fortran to make Fortran into a

robust and efficient parallel programming language
• Single-Program, Multiple-Data programming model

– Single program is replicated a fixed number of times
– Each program instance has it’s own set of data objects –

called an “IMAGE”
– Each image executes asynchronously
– Extensions to normal Fortran array syntax to allow images

to reference data in other image(s)
• Part of the Fortran 2008 standard
• Shared-memory in Fortran Composer XE for

Windows* and Linux*
• Distributed-memory supported in Linux only,

Intel® Cluster Tools product line

12/16/10 30

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Compilation
• ifort –coarray !Linux*
• ifort /Qcoarray !Windows*

along with other options. Enables compiling for CAF. By
default, executable will use as many cores (real and
hyperthreaded) as are available.

ifort –coarray –coarray-num-images=x
ifort /Qcoarray /Qcoarray-num-images=x
along with other options. Sets number of images to “x”.

12/16/10 31

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Running (linux)

• Simple hello world:
program hello_image
 write(*,*) "Hello from image ", this_image(), &

 "out of ", num_images()," total images“

end program hello_image

ifort –coarray –o hello_image hello_image.f90
./hello_image
 Hello from image 1 out of 4 total images
 Hello from image 4 out of 4 total images
 Hello from image 2 out of 4 total images
 Hello from image 3 out of 4 total images

12/16/10 32

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Controlling the Number of Images, env var:
FOR_COARRAY_NUM_IMAGES

• Environment variable can set number of images
• Environment variable overrides

–coarray-num-images compiler option
Linux host> export FOR_COARRAY_NUM_IMAGES=2

./hello_image

Window host> set FOR_COARRAY_NUM_IMAGES=2
hello_image.exe

 Hello from image 1 out of 2 total images

 Hello from image 2 out of 2 total images

12/16/10 33

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

CAF Fundamentals: Determining Number of
Images, num_images()

• Intrinsic function num_images() returns an integer
result, the total number of images in the CAF
program:

$> cat hello_num_images.f90

program hello_num_images

 write(*,*) "Hello there are ", num_images()," total images"
end program hello_num_images

> ifort –coarray –coarray-num-procs=4 hello_num_images.f90

$> ./a.out

 Hello there are 4 total images

 Hello there are 4 total images

 Hello there are 4 total images

 Hello there are 4 total images

12/16/10 34

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Coarray Fundamentals: this_image()
• Images have a logical ordering from 1 to N
• Integer function this_image() without an argument

returns unique logical ordering from 1 to N
– More complex image mappings possible: 2D, 3D, etc with

arguments (topic discussed later)
$> cat hello_this.f90

program hello_this_image

 write(*,*) "Hello from image ", this_image()

end program hello_this_image

$> ifort -coarray -coarray-num-procs=4 hello_this.f90

$> ./a.out

Hello from image 1

Hello from image 3

Hello from image 2

Hello from image 4

•  Remember, the images are inherently asynchronous

12/16/10 35

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

CAF Fundamentals – Codimensions
Declaration, A Simple Scalar Example
• A variable can be declared with a CODIMENSION
real, codimension[*] :: x

real :: y[*]
• X, Y are real scalar variables, codimension can be

used to reference copies of X & Y on remote images
• Similar to assumed size array syntax, “[*]” means

as many copies as there are images, one copy per
image
–  “*” can ONLY be used on last codimension for the object

–  Ex: [*,2] is illegal, but [2,*] is valid: means a 2D ordering of
images. 20 images would have object with [2,10] codimension.
30 images would have object with [2,15] codimensions

12/16/10 36

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

CAF Fundamentals – Codimensions
Declaration, Coarray Examples
real :: myarray(100)[*]
• A program with N images will have N copies of
myarray, 1 per image

• Extent of myarray is 100, lower bound 1, upper
bound 100 on each image

• Coarrays can have normal F08 attributes:
ALLOCATABLE, POINTER, have multiple dimensions,
be part of a derived type, etc.

real, allocatable :: a(:)[*], b(:)[*]

allocate(b(100)[*], b(100)[0:*])
 **note that the brackets and cobounds are
needed

12/16/10 37

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Some Advice Before Some Examples
• CAF behavior rule of thumb: when questioning the

behavior of CAF ask “what would the Fortran
semantics imply here” – follow Fortran rules

• The “[]” codimension syntax is a visual clue to
where communication to remote images is
performed (implies OVERHEAD, implies possible
performance drops)

• There are many restrictions to where coarrays can
be used: Simply put: any attempt to alias a
coarray with a non-coarray object are prohibited:
– Pointers that are not coarrays
– Non-coarray dummy args passed coarrays
– Passing coarray object to C or another language
– COMMON, EQUIVALENCE, etc

12/16/10 38

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

CAF Fundamentals – Codimensions
Reference, A Simple Scalar Example

• Without specifying codimension, usual Fortran
semantics: X is the local image instance for X

x = 42.0 !refers to the local image’s variable instance

If you specify the codimension, it references a
specific image’s copy of the variable:

x[3] = 42.0 !sets X on image 3 to 42.0

x = x[1] !local X gets value of X from image 1

X[i] = x[j] !image I’s value of X set to value from image J

• Objects referenced with square brackets “coindexed
object”

12/16/10 39

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

CAF Fundamentals - Codimensions

• Codimensions follow similar syntax and semantics
as Fortran 90 array dimension syntax

[1:N] codimensions 1 to N
[-1:99, 0:100, -100:-1] upper and lower bounds

need not start at 1, can be negative, etc.
• Restriction: Total number of dimensions PLUS

codimensions <= 15

• Similar to array syntax, objects can have:

–  corank, cobounds, coextents

12/16/10 40

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

CAF Fundamentals - Codimensions

• Intrinsic functions lcobound() and ucobound()
return lower and upper cobounds

• UCOBOUND(coarray [,DIM, KIND]) !upper
• LCOBOUND(coarray [,DIM, KIND]) !lower
real, allocatable :: A[:,:,:]

integer :: lcb(3), ucb(3)

allocate(A[3:4,-1:6,*]) !..assume 30 images

lcb = lcobound(A)

!...if images=30, lcb = (/ 3, -1, 1 /)

ucb = ucobound(A)

!...if images=30, ucb = (/ 4, 6, 2 /)

lcobound(A,DIM=2) == -1

12/16/10 41

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

CAF Fundamentals - Codimensions

• Mapping of objects with codimensions: 2D
real, codimension[2,*] :: x

• Mapping of X if program run with 6 images:

12/16/10 42

Image 1
X[1,1]

Image 2
X[2,1]

Image 3
X[1,2]

Image 4
X[2,2]

Image 6
X[2,3]

Image 5
X[1,3]

Mapping of X if program run with 9 images

Image 1
X[1,1]

Image 2
X[2,1]

Image 3
X[1,2]

Image 4
X[2,2]

Image 6
X[2,3]

Image 5
X[1,3]

Image 7
X[1,4]

Image 8
X[2,4]

Image 9
X[1,5]

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

CAF Fundamentals: Global Barrier
Synchronization

• SYNC ALL statement global barrier: requires all
images to join the synchronization point

• sync images() allows synchronization with a subset
of images. The image set is an integer scalar holding
an image index, an integer array of rank 1 holding
distinct image indices, or an asterisk to indicate all
images,

• Critical sections can be created, bounded by
CRITICAL ; END CRITICAL

• SYNC MEMORY ensures any changed data that is
held in temporary storage (cache, registers) or in
transit between images is made visible to the other
image

12/16/10 43

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Additional Synchronization

• LOCK and UNLOCK statements provide fine-grained
control

• ERROR STOP stops execution on all images
immediately with error code

• Implicit global synchronization at ALLOCATE,
DEALLOCATE of coarrays
– When coarray is allocated on one image, wait until all

images allocate their copy. Otherwise, one image could
attempt to access unallocated coarray data on another
image

– Similar on DEALLOCATE: Wait to remove the coarray data
until all images synch and deallocate: otherwise, other
images could try to access deallocated coarray data

12/16/10 44

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

CAF Fundamentals - Input/Output

• Each image has its own set of connected units
• Default output unit is preconnected on all images

– Assumption is that processor will merge the streams

• Default input unit is preconnected on image 1 only

12/16/10 45

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Further Reading

• Coarrays in the next Fortran Standard
–  ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf

• The New Features of Fortran 2008
–  ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1828.pdf

• Fortran 2008 Standard (current draft)
–  http://j3-fortran.org/doc/standing/links/007.pdf

12/16/10 46

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Poll Question #4

12/16/10 47

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Questions and Answers Session

12/16/10 48

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. 49

Use under NDA only

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components
and reflect the approximate performance of Intel products as measured by those tests. Any
difference in system hardware or software design or configuration may affect actual performance.
Buyers should consult other sources of information to evaluate the performance of systems or
components they are considering purchasing. For more information on performance tests and on
the performance of Intel products, reference www.intel.com/software/products.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2010. Intel Corporation.

50

http://intel.com/software/products

12/16/10

 Software & Services Group, Developer Products Division

Copyright© 2010, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners.

Optimization Notice

Optimization Notice

Intel® compilers, associated libraries and associated development tools may include or utilize options
that optimize for instruction sets that are available in both Intel® and non-Intel microprocessors (for
example SIMD instruction sets), but do not optimize equally for non-Intel microprocessors. In
addition, certain compiler options for Intel compilers, including some that are not specific to Intel
micro-architecture, are reserved for Intel microprocessors. For a detailed description of Intel compiler
options, including the instruction sets and specific microprocessors they implicate, please refer to the
“Intel® Compiler User and Reference Guides” under “Compiler Options." Many library routines that
are part of Intel® compiler products are more highly optimized for Intel microprocessors than for
other microprocessors. While the compilers and libraries in Intel® compiler products offer
optimizations for both Intel and Intel-compatible microprocessors, depending on the options you
select, your code and other factors, you likely will get extra performance on Intel microprocessors.

Intel® compilers, associated libraries and associated development tools may or may not optimize to
the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include Intel® Streaming SIMD Extensions 2 (Intel® SSE2),
Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and Supplemental Streaming SIMD Extensions 3
(Intel® SSSE3) instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best
performance on Intel® and non-Intel microprocessors, Intel recommends that you evaluate other
compilers and libraries to determine which best meet your requirements. We hope to win your
business by striving to offer the best performance of any compiler or library; please let us know if you
find we do not.

Notice revision #20101101

