Introduction to the Intel® Numeric String Conversion Library

Intel® Numeric String Conversion Library (libistrconv) is a new component introduced in
Intel® C++ compiler version 14.0 Update 1. This library provides a collection of routines for
converting between ASCII strings of decimal numbers and C numeric data types. These
routines provide similar functionality as the GLIBC functions strtol, strtoll, strtof, strtod, and
snprintf, but are highly optimized for performance. Tables below are a partial list of
libistrconv functions. For a complete list and discussion, refer to the Intel® C++ compiler

reference manual.

Number to string conversion
libistrconv functions

int __IML_float_to_string (char *str,
size_t n, int prec, float x)

int __IML_double_to_string (char
*str, size_t, n, int prec, double x)

int __IML_int_to_string (char *str,
size_t n, int x)

int __IML_uint_to_string (char *str,
size_t n, unsigned int x)

int __IML_int64_to_string (char *str,
size_t n, long long int x)

int __IML_uint64_to_string (char
*str, size_t n, unsigned long long int
X)

Notes

Convert a single-precision
floating point number to an
ASCII string.

Convert a double-precision
floating point number to an
ASCII string.

Convert a 4-byte signed
integer to an ASCII string.

Convert a 4-byte unsigned
integer to an ASCII string.

Convert a 8-byte signed
integer to an ASCII string

Convert an 8-byte unsigned
integer to an ASCII string

GLIBC equivalents

snprintf (str, n, “%.*g",
prec, X)

snprintf (str, n, “%.*g",

prec, x)

snprintf (str, n, “%d", x)

snprintf (str, n, “%u”, x)

snprintf (str, n, “%lId", x)

snprintf (str, n, “%llu”, x)



String to number conversion
libistrconv functions

float __IML_string_to_float (const
char *nptr, char **endptr)

double __IML_string_to_double
(const char *nptr, char **endptr)

float __IML_str_to_f (const char
*significand, size_t n, int exponent,
char **endptr)

double __IML_str_to_d (const char
*significand, size_t n, int exponent,
char **endptr)

int __IML_string_to_int (const char
*nptr, char **endptr)

unsigned int __IML_string_to_uint
(const char *nptr, char **endptr)

long long __IML_string_to_int64
(const char *nptr, char **endptr)

unsigned long long
__IML_string_to_uint64 (const char
*nptr, char **endptr)

Notes

Convert an ASCII string to a
single-precision floating
point numbers.

Convert an ASCII strings to
a double-precision floating
point numbers.

Convert an ASCII string to
the significand of a single-
precision floating point
number, then multiply it
with 10 to the power of
exponent.

Convert an ASCII string to
the significand of a double-
precision floating point
number, then multiply it
with 10 to the power of
exponent.

Convert an ASCII string to a
4-byte signed integer.

Convert an ASCII string to a
4-byte unsigned integer.

Convert an ASCII string to
an 8-byte singed integer.

Convert an ASCII string to
an 8-byte unsigned integer.

GLIBC equivalents

strtof (nptr, endptr)

strtod (nptr, endptr)

N/A

N/A

strtol (nptr, endptr, 10)

strtol (nptr, endptr, 10)

strtoll (nptr, endptr, 10)

strtoll (nptr, endptr, 10)

These functions behave similarly to their GLIBC equivalents (except for __IML_str_to_fand
__IML_str_to_d). Users can check the man pages of snprintf, strtof, strtod, strtol, and strtoll
for explanations on the arguments and return values. There do exist some key differences
in functionality, though. The libistrconv routines are limited in conversion types, string
formats, error checking, and locales:



__IML_float_to_string and __IML_double_ta_string perform only the ‘%qg’ type of

conversion.

e Allinteger to string conversion routines only produce decimal notation.

e All string to number (integer or floating point) conversion routines only work with
base 10 (decimal notation).

e These functions do not set errno or return an error code.

e These functions support only US English locale (en_us).

Routines __IML_str_to_fand __IML_str_to_d do not have GLIBC equivalents. But they are
just a different interface of __IML_string_to_float and __IML_string_to_double. Instead of
treating the string argument as the complete number representation, these routines treat
the string argument as the significand of some number, and then combine the information
of the exponent argument to produce the final result.

Using libistrconv is straightforward (See a code sample in the Intel C++ Compiler 14.0
reference manual):

Including the “istrconv.h” header file in the source code.

Making calls to these routines as needed.

Compiling the code using a C or C++ compiler.

Linking with libistrconv library statically or dynamically. (On Windows* platforms, only
static linking is supported).

Although libistrconv is included in the Intel® C++ compiler, you can use a different compiler,
for example, GCC or Microsoft* C/C++ compiler, to link with it. But if a non-Intel compiler is

used then you will need to have the CPU dispatcher library from the Intel® C++ compiler on
the link line. The CPU dispatcher is libintlc.so (dynamic linking) or libintlc.a (static linking) on
Linux*, and libirc.lib on Windows*.

Performance

Benchmarking results show that Intel® libistrconv routines significantly outperforms the
equivalent routines provided by GLIBC and Microsoft* C/C++ compiler. See the performance
comparison below on Linux*, Mac* OS X, and Windows*.


http://software.intel.com/en-us/node/485144

Intel® libistrconv vs. GLIBC for String-to-Number and Number-to-String Conversions
(Linux* 0S)

SJI|I ‘ ‘l

String to 4-byte Nt String to 8-byteInt  4-byte Int{slgned or 8-byte Int (slgned or String to float Foat to string String to double Double tostring  String to long double
(skgned or unsigned) (skgned or unsigned)  unsigned)tosting  unsigned) to string

Speedup

ra

-

(=]

Configuration Infio - Versions: inted® C++ Compiler XE 2015 Beta, GCC 4.4.6; Hardware: Intel® Xeon® Processor E5-2687W, 2 Eight-Core CPUs (20ME LLC, 3.1GHz), 32GE of RAM: Operating System: RHEL 6 GA x86_64; Benchmark Source!
Inted Corporation. The reported speedup for each conversion is the geomean of measurements for differant value ranges.

Software and workloads used In performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MoblieMark, are measured using spedfic
Computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other Information and performance tests to assist you
In fully evaluating your contemplated purchases, Induding the performance of that product when combined with other products. * Other brands and names are the property of thelr respective owners.
Benchmark Source: Intel Corporatlon.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unigue to Intel microprocessors. These optimizations
include SSE2, SSE3, and SS5E3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on MiCFOProcessors not
manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the spedific instruction sets covered by this notice. Notice

\_revision 20110804




Intel® libistrconv vs. GLIBC for String-to-Number and Number-to-String Conversions
g g9
(Mac* 05)

jl”ll.ll

String to 4-byteint  String to 8-byteInt  4-byte Int (slgned or 8-byte Int (signed or String to float Float to string String to double Double tostring  String to long double
(slgned or unslgned) (signed or )] to string tostring

Speedup
E =]

ra

=]

Configuration Info - Versions: Imel® C++ Compiler XE 2015 Beta, i686-apple-darwin1 1-vm-gee-4.2 (GC0) 4.2.1 (Based on Apple Inc. build 5658) (LLVM build 2336.11.00) : Hardware: Intef® Core Processor i7-26350M, Quad-Core (PU (6MB
LLC. 2.0CHz). 8GB of RAM: Operating System: Mac* 05 X 10.0 (Darwin): Benchmark Source: Intel Corporation, The reported speedup for each conversion is the geomean of measurements for different value ranges.

Software and workloads used In performance tests may have been optlmized for performance only on Intel microprocessors, Performance tests, such as 5YSmark and MoblleMark, are measured using spedific
computer systems, components, software, operations and functions. Any change to any of those factors may cause the results o vary. You should consult other Information and performance tests to assist you
In fully evaluating your contemplated purchases, Incuding the performance of that product when comblned with other products. * Other brands and names are the property of thelr respective owners.
Benchmark Source: Intel Corporation.

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations
include SSEZ, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on MiCrOprocessors not
manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer 1o the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice

\_revision #20110804




Intel® libistrconv vs. MSVC for String-to-Number and Number-to-String Conversions

(Windows* 0S)
12
10
a8
a
2
g'_ 6
v
4
| J I l
)
String to 4-byteInt  5tring 1o 8-byte Int  4-byte Int(sloned or 8-byte Int (slaned or String to fioat Float o sring String to double Double tostring  String to long double

(slgned or unsigned) (slgned or unsigned) unslgned) tostring  unslgned) to string

Configuration Info - Versions: Intel® C++ Compiler XE 2015 Beta. Microsoft™ (/C++ Optimizing Compiler Version 15.00.21022.08 for x64 : Hardware: Intel® Core Processor i7-2700K. Quad-core CPU (8MB LLC. 3.5GHz). 8GB of RAM:
Operating System: Windows Server 2008 R2 x64: Benchmark Source: Intel Corporation. The reported speedup for each conversion is the geomean of measurements for different value ranges.

Software and workloads used In performance tests may have been optimlzed for performance only on Intel microprocessors. Performance tests, such as 5YSmark and MoblleMark, are measured uslng specHic
computer systems, components, software, operations and functions. Any change to any of those factors may cause the resufts to vary. You should consult other Information and performance tests to assist you
In fully evaluating your contemplated purchases, Including the performance of that product when comblned with other products. * Other brands and names are the property of thelr respective owners.,
Benchmark Source: Intel Corporation.

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations
include SSEZ, SSE3, and S55E3 instruction sets and other optimizations. Intel does not gquarantee the availability, functionality, or effectiveness of any optimization on MICrOprocessors not
manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not spedfic to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice

\.revision #20110804

Notes

e Routines for conversions between strings and floating-point numbers were introduced in
Intel® C++ Compiler 14.0 Update 1.

e Routines for conversions between strings and integers were introduced later in Intel® C++
Compiler 14.0 Update 3.




