
1

EXPLOIT CAPABILITIES WITHIN INTEL® XEON® PROCESSORS

An Introduction to Vectorization

with the Intel® Fortran Compiler

Q: How do I take advantage of SSE and AVX instructions to speed up my code?

Introduction

This paper defines vectorization and introduces how

developers using Fortran can take advantage of it. The

reason to use vectorization is typically related to an

interest in increasing application performance and creating

more efficient application processing.

The paper introduces vectorization techniques that can be

used by just about any application developer and uses the

Intel® Fortran Compiler to exemplify these uses. The first

forms of vectorization presented in this paper are those

that are the easiest to use. They require no changes to

code. Next are libraries, followed by compiler options that

offer advice to the programmer on steps to take to deliver

vectorization. Additional topics are introduced that require

more programmer intervention in source code and which

offer the most programmer control, and frequently, a

higher return in performance or efficiency.

Here are the vectorization topics mentioned in this paper:

 Auto-vectorization capabilities of the Intel® Fortran

Compiler

 Use of threaded and thread-safe libraries, such as

Intel® Math Kernel Library (Intel® MKL)

 Use of special compiler build-log reports to guide

source code changes and use of pragmas

 Guided Auto-Parallelism in the Intel® Fortran Compiler

 SIMD compiler directive

Topics introduced in this paper apply to vectorizing code

for IA-32, Intel® 64 and the upcoming Intel® MIC

architectures. Thus, the vectorization you implement using

the Intel® Fortran Compiler will scale over systems using

current and future Intel processors.

Reading materials are mentioned throughout the paper and

are presented in a list at the end of the paper.

What is Vectorization?

In computer science, vectorization is the process of

converting an algorithm from a scalar implementation,

which does an operation on one pair of operands at a time,

to a vector process, where a single instruction can refer to

a vector (series of adjacent values)1. In effect, it adds a

form of parallelism to software in which one instruction or

operation is applied to multiple pieces of data. When done

on computing systems that support such actions, the

benefit is more efficient processing and improved

application performance. Many general-purpose

microprocessors today feature multimedia extensions that

support SIMD (single-instruction-multiple-data) parallelism.

And when the hardware is coupled with Fortran compilers

that support it, developers of scientific and engineering

applications have an easier time delivering more efficient,

better performing software2.

Performance or efficiency benefits from vectorization

depend on the code structure. But, in general, the

automatic and near automatic techniques introduced below

are most productive in delivering improved performance or

efficiency. The techniques offering the most control

require greater application knowledge and skill in knowing

where they should be applied. But these more intrusive

techniques, such as those that may involve compiler

directives or other source code changes, can yield

potentially greater performance and efficiency benefit

when properly used.

1 A Guide to Vectorization with Intel® C++ Compilers, page 1, Mark

Sabahi, et. al., Intel Corporation.

2 Vectorization with the Intel Compilers, Intel Developer Services, page

1, Aart J.C. Bik, Intel Corporation.

WHITE PAPER

http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/

2

A Good Way to Start: Intel® Compilers

and the Auto-Vectorization Feature

Intel® C++ and Intel® Fortran compilers support SIMD by

supporting the Intel® Streaming SIMD Extensions (Intel®

SSE) and Intel® Advanced Vector Extensions (Intel® AVX) on

both IA-32 and Intel® 64 architecture processors. Both

compilers do auto-vectorization, generating Intel SIMD code

to automatically vectorize parts of application software

when certain conditions are met. Because no source code

changes are required to use auto-vectorization, there is no

impact on the portability of your application.

To take advantage of auto-vectorization, applications must

be built at default optimization settings (/O2 or -O2) or

higher. Add the /Qvec-report1 (-vec-report1) to have the

compiler tell you when it vectorized a loop. With these

settings, the compiler will look for opportunities to execute

multiple adjacent loop iterations in parallel using packed

SIMD instructions3. If one or more loops have been

vectorized, the compiler emits a remark to the build log

that identifies the loop and says that the “LOOP WAS

VECTORIZED.”

When you use Intel compilers on systems that use Intel

processors, you get ‘free’ performance improvements that

will automatically take advantage of processing power as

the Intel architecture gets more parallel. This is an

example of what we mean by ‘scaling forward.’

You can try the Intel compilers yourself by downloading an

evaluation copy of an Intel compiler and testing it with the

sample code included with the compiler4 or with your own

‘loopy’ code. The Intel® Fortran Compiler feature easy-to-

use “Getting Started” guides that take you step-by-step

through the use of the sample code and many compiler

features, such as auto-vectorization.

3 Op. cit., Sabahi, et. al., Intel Corporation

4 The compiler includes a “Getting Started” tutorial and sample code. If

you do the default installation (in this case, on Windows), samples are

located in

C:\Program Files (x86)\Intel\Composer XE 2011

SP1\Samples\en_US\Fortran\vec_samples.zip.

Intel® MKL

Another easy way to take advantage of vectorization is to

make calls in your applications to the vectorized forms of

functions in the Intel® Math Kernel Library (Intel® MKL).

Intel® MKL offers linear algebra functions, implemented in

LAPACK (solvers and eigensolvers) plus level 1, 2, and 3

BLAS, offering the vector, vector-matrix, and matrix-matrix

operations needed for complex mathematical software. A

set of vectorized transcendental functions called the

Vector Math Library (VML) is also included. These offer

greater performance than the libm (scalar) functions, while

maintaining the same high accuracy. The Vector Statistical

Library (VSL) offers high performance vectorized random

number generators for several probability distributions,

convolution and correlation routines, and summary

statistics functions.

Vectorization Reports

Intel compiler build-log reports contain two important kinds

of information about vectorization. First, as noted above,

they reports which loops were vectorized. Second, and

perhaps more useful, an optional report (/Qvec-report2 or –

vec-report2) provides information about why some loops

were not vectorized. This can be very helpful in providing

guidance to restructure code so it will auto-vectorize.

Figure 1. Sample source code followed by a command line to

start the Fortran compiler, and a sample report from the

compiler indicating the loop was vectorized.

subroutine quad(len,a,b,c,x1,x2)

 real(4) a(len),b(len), c(len), x1(len), x2(len), s

 do i=1,len

 s = b(i)**2 - 4.*a(i)*c(i)

 if (s.ge.0.) then

 x1(i) = sqrt(s)

 x2(i) = (-x1(i) - b(i)) *0.5 / a(i)

 x1(i) = (x1(i) - b(i)) *0.5 / a(i)

 else

 x2(i)=0.

 x1(i)=0.

 endif

 enddo

end

> ifort -c -vec-report2 quad.f90

quad.f90(4): (col. 3) remark: LOOP WAS VECTORIZED.

http://software.intel.com/en-us/articles/intel-software-evaluation-center/
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/2011Update/start/win/for/index.htm
http://software.intel.com/sites/products/collateral/XE/Intel_MKL10-3_Brief_101011-2.pdf

3

Figure 2. Similar to Figure 1 but, in this case, it’s an example

of unvectorizable code with a sample report.

subroutine no_vec(a, b, c)

 real(4), dimension(*) :: a, b, c

 integer :: i

 do i=1,100

 a(i) = b(i) * c(i)

 if (a(i) < 0.0) exit

 enddo

end

> ifort -c -vec-report2 two_exits.f90

two_exits.f90(5): (col. 3) remark: loop was not

vectorized: nonstandard loop is not a vectorization

candidate.

Directives

The reports are also useful to help guide use and

placement of the many directives included in the Intel®

Fortran compiler, not including OpenMP* directives, that

can override assumptions made by the compiler. For

developers familiar with their applications, directives make

it easy to declare to the compiler that it is safe to ignore

issues such as potential data dependencies. Other

directives deal with loop counts, allow developers to

declare that a loop is safe to vectorize regardless of what

the compiler thinks about the performance cost or benefit,

and assert that data within the loop are aligned. There is

also a statement to tell the compiler to not vectorize a loop

and a compiler option to not do any vectorization. These

can be useful for ‘before’ and ‘after’ performance and

results testing.

Descriptions and examples of pragmas supported by the

Intel Fortran Compiler are provided in the Intel® Fortran

Compiler XE 12.1 User and Reference Guides (search for

“Compiler Directives”).

The IVDEP directive is applied to a DO loop in which the

user knows that dependences are in lexical order. For

example, if two memory references in the loop touch the

same memory location and one of them modifies the

memory location, then the first reference to touch the

location has to be the one that appears earlier lexically in

the program source code. This assumes that the right-hand

side of an assignment statement is "earlier" than the left-

hand side.

The IVDEP directive informs the compiler that the program

would behave correctly if the statements were executed in

certain orders other than the sequential execution order,

such as executing the first statement or block to

completion for all iterations, then the next statement or

block for all iterations, and so forth. The optimizer can use

this information, along with whatever else it can prove

about the dependences, to choose other execution orders.

Guided Auto-Parallelism (GAP)

The Intel® Fortran Compiler also includes an easy-to-use

tool to help you vectorize code. It’s called Guided Auto-

Parallelism (GAP), which is invoked with the “/Qguide”

option on Windows and “–guide” on Linux. This causes the

compiler to generate diagnostic reports – but no object

code or executables – that suggest ways to improve auto-

vectorization as well as auto-parallelization and data

layout. The advice may include suggestions for source

code changes, applying specific pragmas, or applying

specific compiler options. In all cases, applying specific

advice requires the user to verify that it is safe to apply

that particular suggestion.5 This is a powerful tool to help

you extend the auto-vectorization and auto-parallelism

capabilities of the compiler for developers who are familiar

with the code on which they are working.

SIMD Directive

Yet another tool is user-mandated vectorization using the

SIMD directive. This is a feature that enables you to tell

the compiler to enforce vectorization of loops. Programs

written with SIMD vectorization are very similar to those

written using auto-vectorization hints. You can use SIMD

vectorization to minimize code changes that you may have

to go through in order to obtain vectorized code.

SIMD vectorization uses the !DIR$ SIMD directive to effect

loop vectorization. The options –Qsimd- [on Windows*] or –

no-simd [on Linux* or Mac* OS] may be used to disable any

SIMD directives, for testing and comparisons.

5 Op. cit, Sabahi, et. al., pg 25

http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/2011Update/fortran/win/index.htm
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/2011Update/fortran/win/index.htm

4

The following example in Figures 3 and 4 show an example

using code that does not automatically vectorize the due to

the unknown data dependence distance "X". You can use

the data dependence assertion via the auto-vectorization

hint, !DIR$ IVDEP, to let the compiler decide to vectorize

the loop or not, or you can enforce vectorization of the

loop using !DIR$ SIMD.

Figure 3. Example: without !DIR$ SIMD produces the output

at the bottom of the figure.

[D:/simd] cat example1.f

subroutine add(A, N, X)

integer N, X

real A(N)

DO I=X+1, N

 A(I) = A(I) + A(I-X)

ENDDO

end

Command line entry: [D:/simd] ifort example1.f -

nologo -Qvec-report2

Output: D:\simd\example1.f(6): (col. 9) remark:

loop was not vectorized: existence of vector

dependence.

Figure 4. Example with !DIR$ SIMD produces "LOOP WAS

VECTORIZED" report.

[D:/simd] cat example1.f

subroutine add(A, N, X)

integer N, X

real A(N)

!DIR$ SIMD

DO I=X+1, N

 A(I) = A(I) + A(I-X)

ENDDO

end

Command line entry: [D:\simd] ifort example1.f

-nologo -Qvec-report2

Output: D:\simd\example1.f(7): (col. 9) remark:

LOOP WAS VECTORIZED.

The SIMD directive has optional clauses to guide the

compiler on how vectorization must proceed. An expert

user might employ these clauses to further guide how the

compiler goes about vectorization. In most simple

situations, they are not needed. For more information,

consult the Intel® Fortran Compiler XE 12.1 User and

Reference Guides (search “Directive SIMD”).

Summary

The performance benefits from vectorization and parallelism can be significant. Intel® Software Development Products offer

flexible capabilities that enable tapping into this performance, some of which are automatic, others that are easy to use and

still more that offer extensive programmer control. This paper offers quick survey of these capabilities. Take the time to

download the tools, evaluate them, and see for yourself how you can take advantage of vectorization in contemporary

computing systems.

Other development products from Intel can also help with vectorization and other forms of parallelism. Intel® VTune™ Amplifier

XE can help analyze code to find performance bottlenecks and Intel® Inspector XE can help debug parallel code to verify

threading correctness.

http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/2011Update/fortran/win/index.htm
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/2011Update/fortran/win/index.htm
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
http://software.intel.com/en-us/articles/intel-inspector-xe/

5

Additional Reading and Community

Vectorization with the Intel® Compilers (Part 1), A.J.C Bik, Intel, Intel Software Network Knowledge base and search the title in

the keyword search. This article offers good bibliographical references.

The Software Vectorization Handbook. Applying Multimedia Extensions for Maximum Performance, A.J.C. Bik. Intel Press, June,

2004, for a detailed discussion of how to vectorize code using the Intel® compiler.

Elemental functions: Writing data parallel code in C/C++ using Intel® Cilk™ Plus. Robert Geva, Intel Corporation

Intel Software Network, Search for topics such as “Parallel Programming in the “Communities” menu or “Software Forums” or

Knowledge Base in the “Forums and Support” menu.

Requirements for Vectorizable Loops, Martyn Corden, Intel Corporation

The Software Optimization Cookbook, Second Edition, High-Performance Recipes for IA-32 Platforms by Richard Gerber, Aart

J.C. Bik, Kevin B. Smith and Xinmin Tian, Intel Press.

Evaluate a tool

Download a free evaluation copy of our tools. If you’re still uncertain where to begin, we suggest:

For bundled suites that include the compiler and libraries along with analysis tools, try Intel® Parallel Studio XE or Intel® Cluster

Studio XE (if you use MPI clusters). If you are not interested in analysis tools, Intel® Composer XE combines the Intel compilers

with libraries. Try Intel® Parallel Advisor for Windows* to help identify where you code can benefit from parallelism.

Learning Tools

 Intel® Visual Fortran Composer XE 2011 Getting Started Tutorials

 For Windows

 For Linux

 For Mac OS X

 Intel Learning Lab, collection of tutorials, white papers and more.

http://software.intel.com/en-us/articles/vectorization-with-the-intel-compilers-part-i/
http://noggin.intel.com/intelpress/categories/books/software-vectorization-handbook
http://software.intel.com/en-us/articles/elemental-functions-writing-data-parallel-code-in-cc-using-intel-cilk-plus/
http://software.intel.com/en-us/
http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops
http://www.intel.com/intelpress/sum_swcb2.htm
http://software.intel.com/en-us/articles/intel-software-evaluation-center/
http://software.intel.com/en-us/articles/intel-software-evaluation-center/
http://software.intel.com/en-us/articles/intel-software-evaluation-center/
http://software.intel.com/en-us/articles/intel-software-evaluation-center/
http://software.intel.com/en-us/articles/intel-composer-xe/
http://software.intel.com/en-us/articles/intel-parallel-advisor/
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/2011Update/start/win/for/index.htm
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/2011Update/start/lin/for/index.htm
http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/2011Update/start/mac/for/index.htm
http://software.intel.com/en-us/articles/intel-learning-lab/

6

Purchase Options: Language Specific Suites

Several suites are available combining the tools to build, verify and tune your application. Single or multi-user licenses and

volume, academic, and student discounts are available.

 Suites >>

Intel®

Parallel

Studio XE

Intel®

C++

Studio XE

Intel®

Fortran

Studio XE

Intel®

Cluster

Studio XE

Intel®

Composer

XE

Intel®

C++

Composer XE

Intel®

Fortran

Composer XE

C
o

m
p

o
n

e
n

ts

Intel® C / C++ Compiler

Intel® Fortran Compiler

Intel® Integrated Performance Primitives3

Intel® Math Kernel Library3

Intel® Cilk™ Plus

Intel® Threading Building Blocks

Intel® Inspector XE

Intel® VTune™ Amplifier XE

Static Security Analysis

Intel® MPI Library

Intel® Trace Analyzer & Collector

Rogue Wave IMSL* Library2

 Operating System1 W, L W, L W, L W, L W, L W, L, M W, L, M

Note: (1)1 Operating System: W=Windows, L= Linux, M= Mac OS* X. (2)2 Available in Intel® Visual Fortran Composer XE for Windows with IMSL*(3)3

Not available individually on Mac OS X, it is included in Intel® C++ & Fortran Composer XE suites for Mac OS X

About the Author

Chuck Piper is an Intel Product Marketing Engineer specializing in compilers.

Notices

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,

BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS

PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER

AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS

INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR

INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Optimization Notice Notice revision #20110804

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique

to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does

not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not

specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and

Reference Guides for more information regarding the specific instruction sets covered by this notice.

© 2012, Intel Corporation. All rights reserved. Intel, the Intel logo, VTune, Cilk and Xeon are trademarks of Intel
Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

Intel_ An-Introduction-to-Vectorization-with-the- Intel_Fortran_Compiler_WP /Rev-021712

	Introduction
	What is Vectorization?
	A Good Way to Start: Intel® Compilers and the Auto-Vectorization Feature
	Intel® MKL
	Vectorization Reports
	Directives
	Guided Auto-Parallelism (GAP)
	SIMD Directive
	Summary
	Additional Reading and Community
	Evaluate a tool
	Learning Tools
	Purchase Options: Language Specific Suites
	About the Author
	Notices

